
 1

JavaServer Pages™ , Second Edition

By Larne Pekowsky

Publisher : Addison Wesley

Pub Date : August 15, 2003

ISBN : 0-321-15079-1

Pages : 368

Slots : 1

 2

 Copyright

 Preface

 Acknowledgements

 Chapter 1. Introduction

 Section 1.1. A Brief History of the Web

 Section 1.2. Basic Dynamic Page Generation

 Section 1.3. Solving CGI Problems

 Section 1.4. Welcome to Java News Today

 Section 1.5. Trying the Examples

 Chapter 2. Simple JSPs

 Section 2.1. Removing Text from a JSP

 Section 2.2. JSP Errors

 Section 2.3. Including Text in a JSP

 Section 2.4. The Phases of a JSP

 Section 2.5. Creating Custom Error Pages

 Section 2.6. Java News Today

 Section 2.7. Summary and Conclusions

 Section 2.8. Tags Learned in This Chapter

 Chapter 3. Using Beans

 Section 3.1. Splitting Big Tasks into Manageable Pieces

 Section 3.2. Defining Beans

 Section 3.3. JavaBean Tags

 Section 3.4. Making Data Available Throughout an Application

 Section 3.5. Special Actions When Beans Are Created

 3

 Section 3.6. Making Beans Last Forever

 Section 3.7. Java News Today and Beans

 Section 3.8. Future Directions

 Section 3.9. Summary and Conclusions

 Section 3.10. Tags Learned in This Chapter

 Chapter 4. The Standard Tag Library

 Section 4.1. Tag Libraries

 Section 4.2. Tags with Bodies

 Section 4.3. Dynamic Attributes in Tags

 Section 4.4. Displaying Expressions

 Section 4.5. Formatting Output

 Section 4.6. Compound Data in the Expression Language

 Section 4.7. Browser Detection

 Section 4.8. Combining Tags

 Section 4.9. Selecting among Multiple Choices

 Section 4.10. Summary and Conclusions

 Section 4.11. Tags Learned in this Chapter

 Chapter 5. Java News Today: Part I

 Section 5.1. The Beans

 Section 5.2. The Header

 Section 5.3. The Left-Hand Navigation

 Section 5.4. The Login Page

 Section 5.5. The Quiz Result Page

 Section 5.6. The Section Page

 4

 Section 5.7. The Article Page

 Section 5.8. The Remaining Pages

 Section 5.9. Summary and Conclusions

 Section 5.10. Tags Learned in this Chapter

 Chapter 6. Databases

 Section 6.1. A Quick Introduction to Databases

 Section 6.2. A Language for Databases

 Section 6.3. Using SQL Directly from JSPs

 Section 6.4. Inserting Data from JSPs

 Section 6.5. SQL and Beans

 Section 6.6. Summary and Conclusions

 Section 6.7. Tags Learned in This Chapter

 Chapter 7. Java News Today: Part 2

 Section 7.1. Designing the Tables

 Section 7.2. Adding Articles

 Section 7.3. User Pages

 Section 7.4. Other User Preferences

 Section 7.5. Advertising

 Section 7.6. Summary and Conclusions

 Chapter 8. Working with XML

 Section 8.1. A Brief Introduction to XML

 Section 8.2. Using XML in JSPs

 Section 8.3. Selecting Data from an XML Document

 5

 Section 8.4. Processing XML in JSPs

 Section 8.5. Formatting XML

 Section 8.6. Java News Today and XML

 Section 8.7. Summary and Conclusions

 Section 8.8. Tags Learned in this Chapter

 Chapter 9. A Small Cup of Java

 Section 9.1. Expressions

 Section 9.2. Types

 Section 9.3. Storing Values

 Section 9.4. Method Calls

 Section 9.5. Conditionally Evaluating Code

 Section 9.6. Evaluating the Same Code Multiple Times

 Section 9.7. Grouping Code

 Section 9.8. Handling Errors

 Section 9.9. Modeling a Problem with Objects

 Section 9.10. Objects in Java

 Section 9.11. Building Objects from Classes

 Section 9.12. Sometimes Nothing Is Something

 Section 9.13. Building Classes from Other Classes

 Section 9.14. Interfaces

 Section 9.15. Creating Groups of Classes and Interfaces

 Section 9.16. Using Java in JSPs

 Section 9.17. Database Access from Java

 Section 9.18. Summary and Conclusions

 6

 Chapter 10. Writing Beans

 Section 10.1. How Beans Are Implemented

 Section 10.2. Automatic Type Conversion

 Section 10.3. How Beans Work

 Section 10.4. Bean Serialization

 Section 10.5. Events

 Section 10.6. Special Events

 Section 10.7. Bean Errors

 Section 10.8. Summary and Conclusions

 Chapter 11. Servlets

 Section 11.1. The Servlet Life Cycle

 Section 11.2. The Servlet Class Hierarchy

 Section 11.3. Servlet Events

 Section 11.4. Forwarding and Including Requests

 Section 11.5. Using Scopes from Servlets

 Section 11.6. Using Beans from Servlets

 Section 11.7. The JSP Classes

 Section 11.8. Intercepting Requests

 Section 11.9. Summary and Conclusions

 Chapter 12. The Controller

 Section 12.1. Some Common Controller Tasks

 Section 12.2. Support for Controllers: Struts

 Section 12.3. Summary and Conclusions

 7

 Chapter 13. Creating New Tag Libraries

 Section 13.1. The Tag Life Cycle

 Section 13.2. Tags without Bodies

 Section 13.3. Tags with Bodies

 Section 13.4. Using the Expression Language

 Section 13.5. JSPs as Custom Tags

 Section 13.6. Summary and Conclusions

 Chapter 14. Advanced Topics

 Section 14.1. Declaring Variables and Methods

 Section 14.2. Extending Different Classes

 Section 14.3. Returning Other Kinds of Data

 Section 14.4. Threads

 Section 14.5. Advanced Error Handling

 Section 14.6. Summary and Conclusions

 Appendix A. Summary of Tags

 Section A.1. Built-in Tags

 Section A.2. Core Tags

 Section A.3. Format, Parsing, and Internationalization Tags

 Section A.4. SQL Tags

 Section A.5. XML Tags

 Appendix B. Configuring a Web Application

 Section B.1. Layout of the Directories

 Section B.2. The Web.xml File

 8

Preface

This is a book about how to use an exciting and powerful technology, JavaServer Pages,
(JSP) to create dynamic, interactive Web sites. As the name implies, this technology is
based on the Java programming language and inherits many of the language's features
and benefits. Most notably, Java makes JSPs available on almost every kind of computer
and operating system and certainly all those in common use.
JavaServer Pages are now a mature and stable technology, already in use in thousands of
companies. But maturity has certainly not led to stagnation! Recently, a new version of
the JSP specification was released, bringing new capabilities and possibilities. In addition,
several companion technologies have been developed to augment the fundamental
specification. The new specification, as well as the most important of these associated
technologies, are all covered in this book. Throughout this book, effort has been made to
show the capabilities of all these tools and to discuss how they can best be used.
One of the most important features of JavaServer Pages is how easy they are to use.
Anyone who is reasonably comfortable with HTML (Hypertext Markup Language) can
learn to write JavaServer Pages by using a few simple tags that may do very sophisticated
things behind the scenes, along with small packages of code called JavaBeans. This
allows for a very productive working relationship between HTML experts who build
pages and Java programmers who build beans and new tags.
Both kinds of developer will find material of interest in this book. Chapter 1 gives a brief
history of the Web, setting JSPs in context and clarifying what they are, how they work,
and why they work that way. Chapter 2 introduces some of the simpler features of JSPs
and shows just how easy the transition from HTML to JSP is.
The next two chapters introduce the two vital technologies that give JSPs their enormous
power and flexibility: JavaBeans in Chapter 3 and custom tags in Chapter 4. These tags
are presented as page authors will use them: components that hide all the complexities of
Java behind simple interfaces that can be combined and used in limitless ways. Chapter 5
uses beans and tags to build a fully functional Web site.
One of the great benefits of JSPs is that they make it possible for pages to interact with
complex systems. A very common such system is a database. Chapter 6 introduces
database concepts and discusses easy ways in which a page author can access data.
Chapter 7 uses this information to expand the utility of the site built in Chapter 5.
XML (Extensible Markup Language) is an increasingly important technology, and JSPs
are already well equipped to work with XML. This topic is covered in Chapter 8.

 9

The first eight chapters comprise a logical first half of the book, dealing with the myriad
things page authors can do with JSPs without knowing anything about Java. The
remainder of the book delves under the hood to explain how all this is accomplished and
how Java programmers can extend the capabilities of JSPs. For readers who are not yet
familiar with Java, Chapter 9 introduces the language.
Chapter 10 covers the process of creating new beans. Chapter 11 covers a technology,
called servlets, that underlies JSPs. This information is then used in Chapter 12 to talk
about controllers, Java code that helps pieces of a Web site work together simply and
cleanly. Chapter 13 discusses how to use Java to create new tags. Chapter 14 covers a
few remaining advanced topics.
Readers who are not interested in programming will get the most out of this book by
reading Chapters 1 through 9, which comprise a complete course on how to use JSPs,
beans, tags, and related technologies to build just about any Web site imaginable. At that
point, such readers may wish to learn a little Java from Chapter 9 and then proceed on
through the rest of the book in order to understand better how everything works.
On the other hand, readers who already know Java but who may not be familiar with
JSPs, the new features added as part of the latest specification, or related technologies
will want to move quickly through Chapter 2 to get a feel for JSP syntax and then go
through Chapters 3 and 4 to see how JSPs interface with Java via tags and beans.
Programmers may then wish to proceed to Chapter 10 to see how new beans are created,
and from there through the second half of the book in order to understand servlets and
tags.
Finally, as amazing as it may seem, there is absolutely no cost to developing and
deploying JSPs! There is no need to buy a special server or particular hardware or
operating system. All the tools needed, and many others, have been released for free by
the Apache group. The CD-ROM accompanying this book contains these tools, as well as
all the examples from the book. It is my sincere hope that this book, in conjunction with
these tools, will help you get the most out of this revolutionary new technology for
building exciting, compelling Web sites.

 10

Acknowledgements

This book is very much a group effort, and I am deeply indebted to everyone who helped
make it possible.
It has been my great pleasure to work with some of the brightest and most dedicated
people in New York at CapitalThinking. Although there are too many to name, I want to
thank them all for helping to keep technology fun and exciting enough to write about.
Almost every real-world consideration regarding server-side Java that appears in this
book came out of projects my colleagues and I worked on.
Many thanks and high praise to everyone at the Apache project behind Tomcat, the
standard tag libraries, struts, and so much more. Their decision to make such high-quality
tools free and open source deserves a round of applause from every Java and JSP
developer.
All the code in this book was developed on a FreeBSD system. I owe a debt of gratitude
to everyone behind both the operating system and the Java ports.
I would also like to thank everyone who took the time to read over the manuscript and
make suggestions. The final result is profoundly better for their efforts.
This book would be nothing but a collection of unread bits on my hard drive if not for
everyone at Addison-Wesley, including Ann Sellers, Jacqui Doucette, Debby Van Dijk,
Michael Mullen, Mary O'Brien, and the many others whom I may not have been lucky
enough to work with directly.
Finally, I would like to thank the artists who created the music that kept me company
while I was writing. Many of their names appear in examples scattered throughout the
text.
. . . and I wrote this book for evil gray monkeys who haunt me. . .

 11

Chapter 1. Introduction

Since JavaServer Pages were introduced in June 1999, they have taken the world by
storm! Dozens of products are devoted to JSPs, and hundreds of companies are using
JSPs to build their Web sites and corporate intranets. The friendly .jsp extension can be
seen all over the Web.
The most significant of the many good reasons for this is that it is amazingly easy to
develop sophisticated Web sites with JSPs. Anyone who can write HTML can quickly
create rich, dynamic, and responsive Web sites that enable users to get the most out of
their online time. Through a mechanism called JavaBeans, JSPs have made it possible for
large teams or individuals working on complex projects to divide the work in such a way
as to make each piece simple and manageable, without sacrificing any power. JSPs also
provide a great deal of flexibility when generating HTML, through the ability to create
HTML-like custom tags.
In addition to this fundamental ease of development, high-quality JSP tools are readily
available and easy to use. Developers do not need to buy expensive software or commit
to a particular operating system in order to use JSPs. The CD-ROM accompanying this
book contains everything a JSP author needs to get started, and the tools are powerful
enough to serve even a midsized Web site without problems. These free, open-source
tools are stable and secure and run on nearly every platform. Of course, high-quality
commercial JSP tools are available as well, suitable for serving even the most complex
and high-traffic Web sites.
Although JSPs have been useful and powerful since the beginning, this is an especially
exciting time to be a JSP developer. The recently released version 2.0 of the JSP
specification provides even more features that simplify the process of creating Web sites.
In addition, a standard tag library that provides many JSP tags that solve a wide range of
common problems has been released. Finally, in the time since they were released, a
number of best practices for using JSPs have emerged.
This book covers all the topics: the basic powerful features of the JSP specification, the
improvements introduced with version 2.0, as well as the new standard tag library and all
the things it does. In addition, this book discusses how best to use these tools, based on
real-world experiences.
However, before we get into all the fun, let's take a look back at how the Web has
evolved. This will highlight the kinds of problems that Web authors have faced since the

 12

beginning. Once this is understood, it will be clear how JSPs solve these problems and
make page creation so easy.

1.1 A Brief History of the Web

A Web transaction involves two participants: the browser and the server. As originally
conceived, the browser was supposed to be a very simple, lightweight program that
would allow users to navigate through data. This data could consist of plain text, HTML,
images, and so on, and the browser would render all the data in a way that humans could
understand and interact with. Data could be interconnected, and the browser would render
references between documents as an image or text that could be clicked or otherwise
selected.
Over time, regrettably, rapid development, the race to add new features, and poor
adherence to standards have caused browsers to lose the simplicity for which they once
strived. This has resulted in a situation best summarized by Internet legend James "Kibo"
Parry's description of browsers as "fragile assemblies of bugs, held together with Hello
Kitty stickers."
The server is an equally complex program. The server is responsible for finding the data
requested by the browser, packaging the data for transmission, and sending it back to the
browser.
In the simplest kind of Web transaction, the browser asks for a single document from the
server, and the server retrieves this data and sends it back, at which point the browser
renders it in an appropriate way for the user. This whole process is shown in Figure 1.1.

Figure 1.1. The relationship between browser and server.

 13

This basic activity has many variations. The data being requested by the browser may
come from a user typing a URL (universal resource locater) directly, may be in response
to the user's clicking a link, or may be automatic, such as an image contained within a
page. In each case, the server will receive a properly formatted request for the data, no
matter how the request is generated on the client.
How the server fulfills this request also has many variations. In the simplest model, the
response may come from a file. Often, there is a simple relationship between URLs and
such files. For example, the URL
http://somesite.net/lyrics/This_Ascension/forever_shaken.txt might come from a file
called C:\Webfiles\This_Ascension\forever_shaken.txt on the computer called
somesite.net.
However, just as the server does not care how the request is generated, the client does not
care how the response is constructed. Storing data in a file is perfectly adequate for
information that never changes, such as the lyrics to a song, or that doesn't change very
often, such as a band's tour schedule. When a new date is added to such a schedule,
someone can simply edit the file by using a text editor, such as emacs, vi, or notepad, or a
full HTML editor, such as Dreamweaver.
However, the file-based model does not work for information that changes very rapidly
or that requires input from the user. Following are a few of the ways in which a site might
need to take input from a user.

• Many Web sites are dedicated to getting stock quotes, and these sites are used by

uncountable numbers of people. If Web servers could do no more than send files
around, every site would need to have a separate file for every single stock in
existence. The result would be a huge set of files, and it would be difficult, if not
impossible, to keep them all updated.

• Although many e-commerce companies have gone out of business, e-commerce
itself is thriving, and the electronic shopping cart is now commonplace. This
activity would also be completely impossible without the ability to run programs
on the server. A site could still put its catalog online as a collection of files, but it
takes a program to keep track of what items have been ordered, as well as to
connect with the shipping and inventory systems to send the merchandise to the
user.

• Now that the Web is so big, the only way to find a particular piece of information
is with a search engine. Some companies, notably Yahoo, build huge,
well-ordered catalogs of Web sites, which could in principle be regular HTML

 14

files. For a user to enter arbitrary text in an entry box and obtain a list of files that
contain that word requires a program to look through the files and find ones that
match.

• Users love Web sites where they can vote for their favorite celebrity, manage a
virtual stock portfolio, or compete against other users in a match of wits and
knowledge.

What all these situations have in common is that the content is now dynamic; it needs to
change based on time, user input or preferences, or any of hundreds of other attributes.

1.2 Basic Dynamic Page Generation

Fortunately, a solution to the problem of dynamic content has been available since the
earliest days of the Web. Rather than reading the data from a file, the server can run a
program in order to generate the data. This process is illustrated in Figure 1.2.

Figure 1.2. How a server generates dynamic content.

As far as the browser is concerned, this situation is identical to that when the data comes
from a file. The browser doesn't care whether the server obtains its data by reading a file
or running a program, as long as what it gets back is valid HTML. However, the fact that
a program is being run behind the scenes enables the content to be dynamic.
As shown in Figure 1.2, the mechanism by which the server and the HTML-generating
program communicate is called CGI (common gateway interface). Over time, the
terminology has shifted somewhat, and the programs themselves are now usually referred
to as CGIs.

 15

The earliest CGIs were written in a language called C. A sample CGI written in C is
shown in Listing 1.1. It generates a Web page that contains the current time and date.

Listing 1.1 A sample CGI in C

#include <stdio.h>

#include <time.h>

int main(int argc, char **argv) {

 time_t now;

 printf("<HTML>\n");

 printf("<BODY>\n");

 time(&now);

 printf("The time is now: %s", ctime(&now));

 printf("</BODY>\n");

 printf("</HTML>\n");

 exit(0);

}

This CGI illustrates two important drawbacks to the way the earliest CGIs worked. First,
this program is clearly not a good format for HTML developers. Such a CGI could be
created only by a programmer, and it looks nothing like the HTML that page developers
are used to. In fact, this isn't even a good format for programmers. Each little piece of
HTML requires its own piece of C code. This is acceptable, if ugly, for a simple CGI
such as this, but for a more realistic example involving lots of tables and colors and
JavaScript, this would quickly become overwhelming. It would also make it difficult to
fix problems in the HTML or to make changes in order to make the page more attractive
or useful.
Owing to the speed at which C programs run, C is still frequently used for CGI portions
that are not directly related to the generation of HTML. However, C was rapidly
overtaken as the CGI language of choice by another language, called Perl. Perl's main
advantage is that it is extremely good at manipulating text, which eliminates some of the

 16

overhead involved with C. Listing 1.2 shows the Perl equivalent of the CGI from Listing
1.1.

Listing 1.2 A sample CGI in Perl

#!/usr/bin/perl

$now = localtime(time());

print <<"<EOT>"

<HTML>

<BODY>

The time is now: $now

</BODY>

</HTML>

<EOT>

This CGI is a little better; all the code is in one place, and all the HTML is in another.
They are still in the same file, though, and tightly coupled, so there is no easy way for
different people to work on different portions. In addition, it was possible to move all the
code to the top only because of the simplicity of this example. In a more complex
example, it would likely still be necessary to intermingle the logic with the HTML.
Today, it is possible to write CGIs in almost every language available, even Java. In the
end, however, the CGI model itself has a number of intrinsic problems, regardless of any
language-specific issues.
The first problem is speed. Just the mere task of having the Web server locate and invoke
the CGI program may take up to half a second or so. This may not seem like much, but as
any impatient Web surfer can attest, those seconds add up.
Worse, this start-up penalty must be paid for every request, as once it has finished
processing one request, a CGI program exits and disappears from the computer's memory.
The next time it needs the program, the Web server must be restarted. This is particularly
a problem for complex CGIs that need to access a database or other system resource.

 17

These programs need not only to start up fresh each time but also to load up their
resources.
The transient nature of CGI programs also limits what they can do, at least without help.
The shopping cart is a classic example of this. Clearly, a shopping cart will need to
remember which items a user has selected, but it cannot do this alone if it is going to
evaporate after each item is added. In more technical terms, CGI programs are stateless,
meaning that they cannot keep track of any data between requests. Most CGIs get around
this problem by saving all necessary information to a database before they exit, but this
can be slow and requires that the connection to the database be opened each time the
program is started.
Perhaps the most serious problem with CGIs is the way they mesh presentation with logic.
As noted, the presentation of a page is expressed as HTML and is typically written by
designers and/or expert HTML authors. Program logic, such as what to do on a stock
page if the requested ticker symbol does not exist, lives in the program code and is
written by programmers. Despite exceptions to this division of labor, both HTML coding
and programming are generally such complex and specialized activities that it is rare to
find someone skilled at both.
The problem here is that at some point, the HTML must be incorporated into the program
because ultimately, the program must generate the output; in order to do this, the program
must have all the HTML that will go on the page. This is bad for both the programmers
and HTML authors. When the design changes or new pages are designed, the HTML
authors cannot change the HTML directly because it is buried in the program. They must
present the new designs to the programmers, who must then incorporate the changes into
their code without breaking any functionality. The HTML authors must then try out the
program to ensure that the HTML that comes out is identical to the HTML that went in,
and so on. Hours of company time can be lost this way, and animosity can all too
frequently develop between the programming and production groups.

1.3 Solving CGI Problems

The problems of speed, lack of data persistence, and development have all been
addressed in a number of ways.

1.3.1 Speeding up CGI

 18

As noted earlier, one of the biggest problems with CGIs is that a whole new program
must be started up for every request. A number of approaches have been taken to
eliminate this overhead.
One such approach is called Fast CGI. In this model, the CGI remains running instead of
restarting each time. The Web server passes the CGI requests to the program over a
communication channel called a socket, reads the HTML back over the same channel,
and then passes the HTML on to the user. This gives the situation illustrated in Figure
1.3.

Figure 1.3. Fast CGI.

In addition to solving some of the speed problems, this approach also solves the problem
of keeping state. Because the CGI program never exits, it can hold onto information
between requests. All that is then needed is a way for the CGI to recognize which user is
accessing the page, so it will be able to associate the right data with the right user.
Typically, this is accomplished by sending the user a cookie, a small marker that the
server first sends to the browser and that the browser then includes in any future requests
to the same server. Fast CGIs also allow programs to keep connections to a database open,
eliminating the need to reopen one for each request. This speeds things up another notch.
Some problems remain with Fast CGIs, however. Most notably, each CGI program is
now a separate process, and each will use up a portion of memory and some of the central
processor. This can be alleviated by putting the CGIs on a different computer from the
one where the Web server lives, but then the sockets must talk across the network, which
will slow things down. This will still be faster than having to start a new program each
time, so the situation is not all that bad.
Fast CGIs also introduce a new problem. Updating a regular CGI or adding a new one is
a pretty simple matter, simply replacing the old version of the program with the new one.
Updating a Fast CGI is a bit more involved, as the old version needs to be shut down and

 19

the new one started, and the Web server needs to close down the socket and open a new
one. Installing a brand new Fast CGI is even more difficult and will typically require
some change to the Web server's configuration describing where the Fast CGI process is
running and other information. Most Fast CGI implementations will make this process as
automated as possible, but it may still require special system privileges to make all the
changes happen.
Fast CGIs can be written in C, Perl, or numerous other languages. Typically, the
programs look like regular CGIs, with perhaps some additional code at the beginning.
This makes it very easy for programmers to learn how to write Fast CGIs, but it leaves all
the same problems regarding the intermingling of program code and HTML.
Since the development of Fast CGIs, a few modifications to address these problems have
been made. Most of the popular Web servers can address the problem of too many
separate processes by allowing new dynamic functionality to be added to the Web server
itself. The idea is that new capabilities can be added to the Web server; when it sees a
request that it formerly would have passed off to a CGI, the Web server instead invokes
the new routines. This greatly enhances the speed of requests, as everything now stays in
one process. This architecture is illustrated in Figure 1.4.

Figure 1.4. Web server extensions.

 20

Apache, perhaps the most used and most extensible Web server, took this idea a step
further and incorporated the Perl interpreter. This extension, called mod_perl, allows any
Perl program, with some minor modifications, to run as part of the Web server.
However, extending the Web server this way is not for the faint of heart! It typically
requires a lot of knowledge about the inner details of how the Web server works, as well
as very careful programming. If an error causes a CGI to exit prematurely, no harm is
done, as the next request will simply start a new one. Even Fast CGIs can typically
recover after a crash. But if an extension to the Web server crashes, the whole server is
likely to go down.
Updating extensions to the Web server is even more difficult than updating a Fast CGI,
and only a few system administrators within any given company will typically have the
knowledge and permissions to do so. This makes such an extension useful only for
adding very fundamental kinds of functions, such as new registration or security features,
and not at all well suited to CGI-like applications.
Another approach to improving performance was taken by application servers.
Application servers combine the best features of Fast CGIs and server extensions. Like
Fast CGIs, an application server runs as a separate process and stays running between
requests. This eliminates the cost of starting a new program each time. Like server
extensions, application servers are extensible, allowing programmers to add new features
as needed. This architecture is illustrated in Figure 1.5.

Figure 1.5. An application server.

In a sense, application servers can be thought of as enhanced Fast CGIs, whereby each
extension acts as a separate Fast CGI, but they all sit in the same process. This has
numerous benefits. For example, it was mentioned that a Fast CGI can maintain an open

 21

connection to a database. Clearly, though, each Fast CGI running individually will need
its own connection. An application server can maintain a central "pool" of open
connections and hand one off to each component as needed.
Most modern application servers also support some form of load balancing. This allows
multiple instances of an application server to run, possibly on different computers. If one
application server gets too busy or one of the computers crashes, all requests can go to
another server. The users should never even notice the problem.

1.3.2 Separating HTML from Code

In parallel with the developments on the speed front, progress was made in separating
HTML from program logic. The motivation behind many of these approaches can be
understood by first considering a very simple CGI and building the complexity up from
there.
Consider again Listing 1.1, which is just about the simplest possible CGI. It has almost
no logic, except for the two lines needed to get the date and time. Mostly, it prints out a
bunch of HTML. Therefore, all the HTML could be pulled out of the CGI and put into a
separate file. The CGI would open this file, read the contents, and send them back to the
server. The HTML author could then edit the file without needing to touch the program
code.
Once this mechanism has been built, it is easy to extend it slowly in order to include such
things as the date and time. This is a specific instance of a general problem, namely, that
frequently a CGI will have to incorporate some data, such as the date or a user's name,
into the page.
However, the HTML author need not care where this data comes from. As far as the
design of the page is concerned, the important thing is that the date shows up where it
belongs. The HTML author could indicate this by using a special tag, perhaps something
like <date/>. If the CGI is written in Perl, this tag could even be a Perl variable, such as
the $now variable used in Listing 1.2. Now when it reads the HTML and before sending it
to the user, the program can look over the whole file for any occurrences of <date/>, do
whatever it needs to in order to get the date, replace the tag with the value, and then send
the page along.
This idea can be extended by creating more tags to indicate other common data or
behaviors. Essentially, the new tags define a new language that both the programmers
and the HTML authors agree to speak, and the CGI acts as a translator, converting tags

 22

into actions. This sort of system is often called templating, as the HTML page with the
special tags acts as a template, or blueprint, for all the pages built by the CGI.
Unfortunately, this scheme is not quite powerful enough to do all the things dynamic
pages need to do. Or rather, by the time it does become sufficiently powerful, the set of
tags will be as complicated as any programming language, and we will be back to where
we started. Consequently, most systems built around this idea have introduced a few
mechanisms that allow this basic scheme to be extended dynamically.
The first is to allow the set of tags to be extensible. An HTML author creating a page for
a music catalog, for example, might need a tag to represent the artist's name. In an
extensible system, the HTML author could communicate this need to someone in the
programming staff, and the two could agree on a new tag to use. The HTML author could
then start using this tag while the programmer goes and writes the code that will respond
to it.
The system can also be extended in other ways. In addition to creating new tags, the
programmers could create new functions, which may be thought of as small magic black
boxes, with a slot to drop things into and a ramp where things come out. An HTML
author could, metaphorically, drop the name of a musical artist into the slot, and the
names of all that artist's albums would come spilling out from the ramp. Then tags could
be used to specify where on the page these album names should go.
Best of all, a programmer can extend a templating system like this by providing new
objects. In programming terms, objects are much like physical objects in the real world.
They have properties that can be obtained or changed, numerous complex ways in which
they may relate to other objects, and so on. In the previous example, instead of providing
a function, the programmer could provide an "artist" object. One property of this object
would be a list of albums, and an HTML-like tag could request this list. Each album
would also be an object, and some of its properties would be the year it was recorded, the
list of track names, and so on. In other words, the artist object would encapsulate all the
relevant information in one neat bundle. Again, tags could be created to access the
information from this object and the other objects it contains.
This concept is illustrated in Figure 1.6. The box at the top left displays the list of albums
as rendered in a browser. Below this is a simplified view of the "artist" object. The box
on the upper right shows a hypothetical page that could generate the data for the browser.
First is a tag that sets up the "artist" object with the name of the artist in question; then
another tag retrieves the set of albums from the object and sends them to the browser.
Although highly simplified, the basic concepts are very similar to the way JSPs work.

 23

Figure 1.6. A tag that uses an object.

New tags, functions, and objects can greatly extend the way the templates get data but
still do not allow much control over how that information is presented. For example, it is
easy to create a tag that means "get all albums by this artist," but it is much more difficult
to express the concept "display all the albums where the first track was written by the
lead singer." All the necessary information might be present in the object, but combining
that information in arbitrary ways may be infeasible.

 24

Consequently, most templating systems allow for some form of scripting. Scripting

allows elements of a full programming language�usually the language in which the

translation CGI is written�to be included in the page. All languages have a way to

compare two pieces of text and do different things, depending on whether they match.
The example in the previous paragraph would require writing some code that checked
whether the name of the lead signer matched the name of the author of the first track.
This is once again mixing programlike code with HTML, but because most of the hard
work is done in the objects or functions, all the HTML authors typically need to know is
some relatively simple control structures that do such things as compare two values or
loop through a set of values, performing some action on each.
So far in discussing templating, nothing has been said about performance. Not
surprisingly, the speed of such a system may be less than ideal. First, the CGI has to be
started, then it has to read the template, then it has to look for all the special tags and
process them, and so on. All other things being equal, a system like this is likely to be
orders of magnitude slower than a CGI written entirely in C.
There is still hope for templating by mixing it with the performance-improvement ideas
that were discussed previously. In particular, it is possible to turn the templating CGI into
an extension to the Web server, which will eliminate the need to start the CGI up each
time a template is needed. This also allows templates to save state information, use
shared resources efficiently, and so on. Many such templating systems are alive and well
today, from PHP, a well-known hypertext preprocessor that mixes scripting commands
with HTML; to WebSQL, a templating system that provides easy access to databases; to
osforms, a system built by Object Design to work with its object database.

1.3.3 Servlets and JavaServer Pages

Let's reconsider some of the problems with CGIs. As previously noted, it is
time-consuming to have to restart a CGI program for each request. Because the program
does not persist between connections, it is difficult to maintain state. Although it is
possible to overcome these problems with Fast CGIs or server extensions, these make
adding new functionality relatively difficult.
Sun's approach to solving these problems is to use servlets. Just as an applet is a small
application that extends the functionality of a Web browser, a servlet is a small piece of
code that extends the functionality of a server.

 25

Technically, a servlet is an object, written in Java, that is equipped to receive a request
and to construct and send back a response. Because servlets are written in Java, they
inherit all the language's power and strengths. One of these strengths is speed, as a great
deal of effort has been put into making Java perform well as a server language. Equally
important, Java is also a cross-platform technology, so it is possible to develop a servlet
under Linux, deploy it on NT, and move to Solaris when the site grows, all without
needing to change or recompile anything.
Of special interest to Web developers, Java is an intrinsically dynamic and extensible
language. This neatly eliminates the problems inherent in extending a Web server. If it
supports Java, the server can be told to load a new servlet with a minimal change to a
configuration file and without needing to recompile anything.
The servlet architecture is designed to eliminate the need to reload anything every time a
request is made. Instead, the servlet is loaded once, the first time it is needed; after that, it
stays active, turning requests into responses as quickly as the Web server can send them.
This gives servlets all the speed of Fast CGIs, with none of the hassles. In short, servlets
can completely replace CGIs, with no downside.
Servlets also have one additional advantage. Because Java was designed from the ground
up as a secure language, servlets can be run in a "secure sandbox," which will prevent
them from accessing any potentially sensitive system resources. It is certainly possible to
write a CGI that has no security problems, and there are tools to assist in this endeavor.
Nonetheless, many security breaches on Web sites happen through insecure CGIs.
The next logical step would be to build a templating system on top of servlets. However,
the Art Technology Group (ATG) had an even better idea. Instead of writing a servlet
that reads a file, figures out what to do based on special tags, and then does it, why not
translate the special tags directly into Java and then compile and run the Java code? This
would mean that the first time a page was requested, it would take a little longer to do the
conversion, but the second and subsequent requests would be as fast as a servlet. This
revolutionary concept, called page compilation, was introduced in ATG's application
server, called Dynamo. Sun was so impressed by the concept that it licensed the
technology for inclusion in its own Java Web Server. The JHTML model is shown in
Figure 1.7.

Figure 1.7. The flow of information through a JHTML page.

 26

No idea is perfect on the first try, and page compilation had problems. Most significantly,
there were problems with the set of special tags that ATG had defined, which were
somewhat cumbersome, somewhat limited, and completely unlike the tags that other
templating systems were using. Over time, Sun has refined these tags to create
JavaServer Pages.
JavaServer Pages, or JSPs, combine the best features of the many approaches to dynamic
page generation we have discussed. JSPs are implemented in Java, so they are cross
platform and inherit all Java's other strengths. Because they are built on top of servlets,
JSPs are fast and can be changed easily. They are extensible, and programmers can easily
create new objects and functionality using JavaBeans, which page authors can use
equally easily.
Sun considers JSPs so important that they are included as a formal part of the Java 2
Enterprise Edition, the standard version of Java for large companies doing complex,
performance-critical tasks. Every major vendor of application servers has announced
support for JSPs, including ATG, BEA's WebLogic, IBM's Web Sphere, and many more.
JSPs have truly become an industry standard.
Best of all, the power of JSPs is not limited to big enterprises or companies that can
afford an application server. At the 1999 Java One conference, Sun announced a
partnership with the makers of the Apache Web server to provide full support for JSPs

 27

under Apache. The resulting project, called Jakarta, has been refined and improved many

times since then and now allows anyone with a computer to develop and deploy JSPs�c

ompletely for free.

1.4 Welcome to Java News Today

Throughout this book, we will be following the evolution of a fictional Web site called
Java News Today. JNT is a start-up company of Java enthusiasts who want to create a
compelling, up-to-the-minute site covering all things Java. Because it wants to attract and
maintain an audience, JNT will make its site as dynamic as possible. In addition to
updating the content frequently, the site is to have games, polls, search functionality, and
other interactive features. JNT also considers it very important to allow users to
customize and adjust the site to fit their own needs. The folks at JNT hope that lots of
users will make JNT their home page and that no users will move into a home they
cannot decorate themselves.
Everyone at JNT will openly admit to being a fan of the Slashdot site, at
http://www.slashdot.org, and the Java Lobby, at http://www.javalobby.org. Readers
familiar with those sites may notice some similarities in the features that JNT is trying to
build. But then, imitation is the sincerest form of flattery.

1.5 Trying the Examples

All the examples in this book have been included on the companion CD-ROM, so readers
can see them in action and experiment with changes. The CD-ROM also includes Tomcat,
the high-performance JSP engine provided for free by the Apache project, at
http://jakarta.apache.org. The version included is 5.0, the first implementation of the JSP
2.0 and servlet 1.3 specifications.
The CD-ROM also includes a number of third-party libraries that provide useful utilities.
These libraries include HypersonicSQL, a file-based database written in Java; Jaxen, a set
of Java classes for working with XML; and the Canetoad utilities, which provide a
number of utilities for working with beans.

 28

Instructions for installing and running the examples can be found in the index.html file on
the CD-ROM. Most users can simply double-click this file to get started.

 29

Chapter 2. Simple JSPs

Chapter 1 presented the case for dynamic sites and surveyed a number of techniques for
building such sites, focusing on the strengths of JavaServer Pages technology. With these
preliminaries out of the way, everything is in place to start creating some pages! This
chapter begins by introducing some of the simpler features of JSPs.
It is a time-honored tradition for computer books to start with an example that allows the
system being studied to introduce itself. This book is no exception, so without further
delay, Listing 2.1 contains our first JSP.

Listing 2.1 A simple JSP

<html>

<!-- Our first JavaServer Page -->

<body>

Hello, world!

</body>

</html>

This may look like a plain old chunk of HTML, not a very interesting one at that.
However, when saved in a file called index.jsp and given to a JSP engine such as Tomcat,
this chunk of HTML becomes much more than a static block. In fact, this is a program
very similar to the programs in Listings 1.2 and 1.3.
As a program, this file contains a series of instructions that the JSP engine will follow.
Written out in English, these instructions are equivalent to the following:[1]

[1] This isn't quite true. For the sake of efficiency, most JSP engines send out contiguous chunks of HTML all at once.

However, it is often helpful to think of JSPs as being processed one line at a time.

1. Send the text <html> to the user.
2. Send the text <!-- Our first JavaServer page --> to the user.
3. Send the text <body> to the user.
4. Send the text Hello, world! to the user.
5. Send the text </body> to the user.
6. Send the text </html> to the user.

 30

More technically, a program called the page compiler converts the original file into
another little Java program, a servlet as discussed in Section 1.3. This servlet is what gets
run. Servlets are an important technology, and they are covered in more detail in Chapter
11. For the time being, these details are unimportant, and it is perfectly reasonable to
think of the JSP file itself as the program.
At this point, three different things are all going by the name index.jsp. One is the
original file, sitting in a directory from where it can be edited like any other file. Second
is the servlet, which is managed by the JSP engine and is generally not meant to be seen
directly. Third is the URL and the corresponding page as seen in a browser. To avoid
confusion, the specific meaning will always be indicated when it is not clear from the
context.
In this particular case, all the extra work of creating and running a program has not
accomplished anything. However, the translation has not been pointless, as it has created
a program from HTML. This is why JSP authors generally do not need to do much
programming themselves. The JSP engine is quite sophisticated and can turn a few
simple tags into very complex code. The servlet that is generated and the environment in
which this code runs are also very sophisticated, which removes even more of the
programming burden.
This program illustrates two of the basic rules for the JSP programming language:

1. Plain text turns into a command to send that text to the user.
2. Regular HTML tags turn into a command that sends that tag to the user.

2.1 Removing Text from a JSP

All it takes is a small change to Listing 2.1 in order to start exploring some of the things
the JSP engine can do. Note that the HTML comment, "Our first JavaServer Page," has
turned into a program instruction that sends the comment to the user.
To people building and maintaining pages, these kinds of comments are often useful
because they can clarify what a block of otherwise indecipherable HTML is meant to be.
However, because it is a regular part of the document, this comment will show up in the
"view source" function of a user's browser.
This is typically not a problem, although it is possible for these comments to contain
implementation details that might be confidential. Or maybe a page author was having a

 31

bad day and used some comment space to rant about his or her boss or relationship or the
state of the world. These comments can be quite embarrassing if anyone happens to see
them.
So, here is a dilemma. Comments are useful to authors but useless, or worse, for readers.
JSP has a solution to this. The preceding HTML comment could be replaced with a JSP
comment, like so:
<%-- Our first JavaServer Page --%>

When it sees this tag, the page compiler will recognize it as a comment and will not put it
into the servlet that it builds. Hence, this comment will never be sent to the user and will
not show up when the user does a view source. Again, this effect is subtle and, frankly,
not that exciting. However, it does begin to show that what goes into a JSP file can and
will be different from what comes out. Further, this adds a third rule to the JSP
programming language: Text enclosed between comment tags (<%-- and --%>) does not
turn into an instruction at all but is simply ignored.

2.2 JSP Errors

As smart as the JSP engine is, it is also very literal minded. Like any other program ever
written, the best it can manage is to do what we say, which is not always the same thing
as to do what we want. When a JSP page does not specify what to do in exactly the right
way, the JSP engine sometimes has no alternative but to give up, return an error page,
and ask for help.
One common error is leaving out a closing tag. This might happen if a page author tries
to close a JSP comment as if it were an HTML comment, as in <%-- our first JSP -->.
A user who tries to access this page will receive a rather unsettling page giving a great
deal of information about the cause and nature of the error. The exact format of this
message varies between JSP engines; Tomcat generates a page such as the one shown in
Figure 2.1.

Figure 2.1. The Tomcat error page.

 32

The most significant part of this message is the first exception line, which contains the
following:
/error1.jsp(1.4) Unterminated <%-- tag

This line concisely specifies what the problem is, along with the name of the file in which
the error occurred. The numbers in parentheses are the line number and the number of
characters within the line where the problematic tag starts.
A variation of this problem is even more insidious. Consider the following JSP snippet:
<%-- This is a comment -->

Hello, world.

<%-- This is another comment --%>

When a browser requests this page, the content will be missing, but no error will be
generated. The reason is that this time, the comment tag is closed; it just happens to be
closed by the second comment tag! This means that the page compiler will consider
"Hello, world" as part of the comment and will discard it.

2.3 Including Text in a JSP

 33

Removing text from a page is only slightly useful; it is much more exciting to consider
ways in which a JSP can add data to a page. This data may come from any number of
places, such as a database, some Java code, or data explicitly provided by the user.
Regardless of the source, it will be the JSP's job to inject this data into the page.
The first and simplest place a JSP can get data from is another JSP. Listing 2.2 shows a
slightly modified version of Listing 2.1.

Listing 2.2 A JSP that includes another JSP

<html>

<body>

Hello again, world!

<jsp:include page="content.jsp"/>

</body>

</html>

This turns into a program just as Listing 2.1 did, and once again, all the HTML tags turn
into instructions that send those tags to the browser. The jsp:include tag turns into an
instruction for the JSP engine to run the program called content.jsp, which is shown in
Listing 2.3.

Listing 2.3 The included content

This is some text from content.jsp.

Note that Listing 2.3 contains a complete and valid JSP. A browser could request
content.jsp directly, and the response would be the message with no HTML or other tags.
However, the intended use is that the browser will request the top-level page, which will
render its content, and then the jsp:include tag will call content.jsp. Control will then
return to the original page, which will send the final closing body and HTML tags. The
result, as far as the browser is concerned, will look exactly as if all the HTML was in the
original page all along.

Errors to Watch For

Includes can suffer from the same kinds of errors as comments. First, tags can
be broken, such as <jsp:include page="content.jsp">, which is missing the
closing slash. The JSP engine will catch this error and report it as

 34

/index.jsp(3,0) Expected "param" tag with "name" and

"value" attributes without the "params" tag.

It is also possible to attempt to include a file that does not exist, which will
usually happen because of a typo, such as typing headers.jsp instead of
header.jsp. In this case, the JSP engine will report "Can't read file headers.jsp,"
which is easily fixed.

Two files do not make for a very interesting site, but the jsp:include tag becomes much
more useful when there are many more files. In one common scenario, many files may all
want to include some common text. For example, every page on a site might have at the
bottom a clever or amusing quote that the site administrators change once a week. If this
quote is kept in its own JSP, it is necessary to change only that one file in order to change
the whole site.
Conversely, one file may want to include several others. A customized news site might
have separate JSPs for top headlines, technology stories, weather, and sports. Many
different combinations of content pages could then be easily created by simply choosing
which of these pieces to include. In this sense, using JSPs is a lot like building with
LEGOS: Whole sites can be constructed by combining simple blocks in different ways.
Both of these techniques will be used extensively later in this chapter.
Closely related to the jsp:include tag is another, called jsp:forward. Whereas
jsp:include includes the contents of one page within another, jsp:forward simply
sends the user to another page. This requires that the page issuing the jsp:forward have
no text other than blank lines either before or after the tag. This may not seem useful yet
but later will allow pages to make decisions about what content should be displayed.

2.4 The Phases of a JSP

Each JSP goes through two distinct phases. The first phase, when the translator turns the
file into a servlet, is called translation time. This translation from JSP to servlet happens
whenever the JSP file is modified.
The second phase, when the resulting servlet is run to generate the page, is called request
time. This happens whenever a browser requests the page. Different things happen in
each phase, and the distinction is important.
The handling of JSP comment tags happens at translation time. The translator simply
omits any text within comment tags, so the servlet will not even need to deal with it.

 35

Conversely, the jsp:include tag is handled at request time. For every request that
comes in for the index.jsp URL, the content.jsp servlet will be run when the
jsp:include tag is encountered. In principle, this could have been done at translation
time; the chunk of HTML from the content.jsp file could have been dropped right into the
index.jsp servlet. This would be much less powerful, however. By processing includes at
request time, the contents of the included file can change independently of the main file.
Another advantage to processing includes at request time is that doing so ensures that no
JSP is fundamentally special or different. Every JSP is a little program that can be run by
requesting the corresponding URL through a browser; there is no distinction between
"top-level" and "included" JSPs. As mentioned, this means that a browser can directly
request an included file, such as content.jsp, which is often useful when testing page
components.
This also guarantees that all JSP elements will work the same way in all pages. This
means that JSP comments will be stripped out of included files and that the jsp:include
tag will work inside included files! Files can include files that can include files, and so on,
potentially to infinity.
For the sake of completeness, it is worth mentioning the translation-time version of the
jsp:include tag, called the include directive. This tag looks like this:
<%@include file="contents.jsp" %>

This tag is called a directive because it directs the page compiler to take some action. In
this case, when it sees the directive, the page compiler will embed the contents of the
contents.jsp file directly into the servlet that it is building for index.jsp. Subsequently, if
the contents.jsp file is edited, index.jsp will not change. Browsers will continue to get the
old message until the page compiler is forced to rebuild the index.jsp servlet.
Note that the include directive specifies what is to be included with file=, whereas the
jsp:include tag specifies page=. This nicely encapsulates the differences between the
two: The directive includes a file as it is building the servlet at request time, and the tag
includes another page at request time.
In some obscure instances, the include directive and the jsp:include tag are not
equivalent. For the most part, though, the two are functionally identical, and as the
jsp:include tag is more convenient, it will be used in preference to the directive
throughout this book.

2.5 Creating Custom Error Pages

 36

Many other directives are available for issuing instructions to the page translator. One of
the most useful is called, not surprisingly, page.
This directive takes a number of forms, many of which will be encountered throughout
this book as needed. One immediately useful option allows a JSP to specify where the
user should be directed in the event of an error. Tomcat's default error page, as already
shown in Figure 2.1, can be useful to developers but more than a little scary to end users.
Ideally, users will never see an error page, but a good site plans for all contingencies and
so should include an error page that fits visually with the rest of the site and that allows
the user to continue what he or she was doing, to whatever extent possible.
Using a custom error page involves two steps. The first is to create the page, which can
be another JSP. However, error pages need to be treated differently from regular pages,
and so the page translator must be notified that a JSP will be used as an error page by use
of the following page directive at the very top of the file:
<%@ page isErrorPage="true" %>

Once such an error page has been created and properly identified, it can be used in one of
two ways. The first is globally, by telling Tomcat which error page to use for each type of
error. This is done through a configuration file and is shown in Appendix B.
In addition to the global approach, each JSP can specify its own error page through
another variation of the page directive, as in
<%@ page errorPage="error_page_url" %>

Here, error_page_url is the URL of the error page, relative to the current page. Both of
these versions of the page directive will be demonstrated in the next section.

2.6 Java News Today

Java News Today, our fictional news site, is ready to begin constructing its site. JNT has
decided to start with the new home page and for the moment will not worry about the
dynamic elements. The first version is shown in Listing 2.4.

Listing 2.4 The JNT index page

<%@ page errorPage="error.jsp" %>

<html>

<head>

 37

 <link rel="StyleSheet"

 href="style.jsp"

 TYPE="text/css"

 media="screen">

 <title>Java News Today: Welcome!</title>

</head>

<body>

<table width="100%"

 border="0"

 cellspacing="0"

 cellpadding="0">

 <tr>

 <td width="15%" class="borders">

 <%-- Big Empty Corner --%>

 </td>

 <td width="20" class="borders">

 <%-- Little buffer for the curvy bit --%>

 </td>

 <td class="borders">

 <%-- start header --%>

 <center><h2>Java News Today: Welcome!</h2></center>

 <%-- end header --%>

 </td>

 </tr>

 <tr>

 <td width="15%" class="borders"></td>

 <td width="20" height="20">

 <%-- The curvy bit --%>

 38

 </td>

 <td></td>

 </tr>

 <tr>

 <td width="15%" class="borders" valign="top">

 <%-- start navigation --%>

 Navigation - none yet

 <%-- end navigation --%>

 </td>

 <td width="20"></td>

 <td valign="top" align="left">

 <%-- All content goes here! --%>

 </td>

 </tr>

</table>

</body>

</html>

JNT saves the contents of Listing 2.4 into a file called index.jsp, points its browsers at the
corresponding URL, and as expected sees the page in Figure 2.2.

Figure 2.2. The JNT home page.

 39

Conceptually, this page consists of four major elements: the header, the navigation, the
content, and the HTML that connects it all together. Note the use of JSP comments to
delineate these sections. It is generally wise to mark off major functional areas of a page,
but as the end user is probably not interested in these fences, they might as well be JSP
comments instead of HTML comments.
Different pages will have different content, but it is reasonable to expect that the header
and navigation will be repeated all over the site, although doing so can be a major
headache. The author of each new page will have to remember to put these pieces in and
will have to worry about getting everything right. Worst of all, sooner or later will come
the hateful day when a new section is introduced and everyone has to go back and reedit
all their pages.
The solution for this nightmare scenario is, of course, the jsp:include tag. The header
and footer will be split into separate files. The header.jsp file will contain everything in
Listing 2.4 from <%-- start header --%> to <%-- end header --%>. Likewise,
navigation.jsp will hold everything from <%-- start navigation --%> to <%-- end
navigation --%>.
This technique of pulling out common chunks of HTML and putting them in separate
files is called templating, although the use of the word here is slightly different from that
in Chapter 1. Here, a template is merely an HTML page with some "holes" where text
should be, along with a way to indicate where this text should be found. The advantage is
that many pages can have the same spaces, and all these holes can be filled from the same

 40

place. This makes it possible to keep the header in exactly one file and let each page have
a space that should be filled by this file.
So far, this might seem like a rather goofy thing to do, as the header and navigation are
currently so small. However, rest assured that they will grow in subsequent chapters, and
the advantages of removing them from the main page will become increasingly obvious.
One such advantage is that it now becomes easy to create alternative versions of the
home page. Because all the HTML elements remain in the main file, a simplified version
suitable for text-only browsers, such as Lynx, could be created with a page like that
shown in Listing 2.5.

Listing 2.5 A version of the home page without tables

<%@ page errorPage="error.jsp" %>

<html>

<head>

 <title>Java News Today: Welcome!</title>

</head>

<body>

<jsp:include page="header.jsp"/>

<hr>

<jsp:include page="navigation.jsp"/>

<hr>

<%-- The contents of each page go here --%>

</body>

</html>

Note that there are a lot of HTML elements. It would be a real pain to have to rewrite
them for every page on the site. Fortunately, the jsp:include tag can once again come
to the rescue. The idea is that everything above the content can be placed in one file and
everything below in another, and then each new page can be created as simply as writing

 41

the content and including two files. This final version of the JNT home page is shown in
Listing 2.6.

Listing 2.6 The final version of the index page

<%@ page errorPage="error.jsp" %>

<jsp:include page="top.jsp"/>

Content goes here!

<jsp:include page="bottom.jsp"/>

Now that's what a JSP should look like! For the sake of completeness, top.jsp is shown in
Listing 2.7 and bottom.jsp in Listing 2.8.

Listing 2.7 The top part of the page

<%@ page errorPage="error.jsp" %>

<html>

<head>

 <link rel="StyleSheet"

 href="style.jsp"

 TYPE="text/css"

 media="screen">

 <title>Java News Today: Welcome!</title>

</head>

<body>

<table width="100%"

 border="0"

 cellspacing="0"

 cellpadding="0">

 <tr>

 <td width="15%" class="borders">

 42

 <%-- Big Empty Corner --%>

 </td>

 <td width="20" class="borders">

 <%-- Little buffer for the curvy bit --%>

 </td>

 <td class="borders">

 <%-- start header --%>

 <jsp:include page="header.jsp"/>

 <%-- end header --%>

 </td>

 </tr>

 <tr>

 <td width="15%" class="borders"></td>

 <td width="20" height="20">

 <%-- The curvy bit --%>

 </td>

 <td></td>

 </tr>

 <tr>

 <td width="15%" class="borders" valign="top">

 <%-- start navigation --%>

 <jsp:include page="navigation.jsp"/>

 <%-- end navigation --%>

 </td>

 <td width="20"></td>

 <td valign="top" align="left">

Listing 2.8 The bottom of the page

 43

 </td>

 </tr>

</table>

</body>

</html>

Top.jsp includes header.jsp and navigation.jsp, but it is perfectly OK for an included JSP
to include yet other ones.
One problem with the way this page has been split up is that the title tag is currently
hard-coded in top.jsp, and the page banner is likewise hard-coded in header.jsp. This is
quite easy to fix but requires a tag that has not been introduced yet and so will have to
wait until Chapter 4.
It is also worth pointing out that this page uses a style sheet to set various visual attributes
of the page. This in itself is not unusual; most Web sites do the same thing. However,
note that the style sheet being used is not a regular .css file but another JSP! This will
turn out to be very important when tackling customization, as it will allow the style sheet
itself to be generated dynamically! For the moment, this file is static and pretty small but
is shown in Listing 2.9 for those interested.

Listing 2.9 The style sheet

TABLE.form { border-style: groove;

 border-color: #004400; }

TD.label { border-style: solid;

 border-width: 1px;

 border-color: #00aa00;

 background: #00AA00;

 color: #000000;

 padding-right: 5px }

TD.form { border-style: solid;

 border-width: 1px;

 border-color: #004400;}

TD.borders { background: #66ffff; }

 44

DIV.bordered { border-style: groove;

 border-color: #004400; }

All versions of the index page now use the page directive to link to a custom error page,
and this error page is shown in Listing 2.10.

Listing 2.10 The error page

<%@ page isErrorPage="true" %>

<html>

<head>

 <title>Java News Today: Error</title>

</head>

<body>

We're sorry, but an error occurred while building

your page. We will try to fix this problem shortly;

in the meantime please return to the

JNT home page

</body>

</html>

Apart from the page directive at the top, this looks just like any other JSP. This is only a
very bare-bones example; a more realistic error page would include the same header and
navigation elements that the index page used, so as to make it look more like a regular
page on the site. In addition, a sophisticated error page could do something like notify the
site administrator that an error had occurred. Unfortunately, doing something like this
requires many features that have not yet been discussed, and so it will have to wait until
Chapter 14.

2.7 Summary and Conclusions

 45

This chapter started down the exciting road of writing JSPs. The two phases of a JSP's
existence were discussed: the translation phase, in which JSP code is turned into a Java
servlet, and the request phase, in which the servlet is run to produce HTML.
So far, we have not even begun to scratch the surface of what JSPs can do. The next
chapter starts looking at some of the things that can be done at request time, which is
when the doorway to dynamic content really opens.

2.8 Tags Learned in This Chapter

<%-- --%> JSP comment
Parameters: None
Body: None
Anything within the comment tag is removed by the page compiler at translation
time.

jsp:include Include tag
Parameters:
 page: Specifies the page to be included
Body: None
The named page is evaluated and the results included into the output at request time.

jsp:forward Forward tag
Parameters:
 page: Specifies the page to be included
Body: None
Control passes to the named page. The calling page must not contain any text before
or after the tag.

@include Include directive
Parameters:
 file: Specifies the file to be included
Body: None
The named file is included into the servlet built by the page compiler at translation
time.

 46

Chapter 3. Using Beans

The examples in Chapter 2 were quite simple, although they did illustrate a few important
points. Notably, these examples demonstrated how a JSP file is converted into a little
program and how this program can then perform certain actions when it is run. What is
needed now is a mechanism for pages to react to user input and other data.
A page may need to react to such information in any of several ways. For example, a
page that displays a stock portfolio typically uses green text to show the stocks that have
increased in value and uses red to show those that have decreased in value. Here the page
needs to display a value and also change an aspect of its appearance, based on the value.
A page might also want to use a value in a complex calculation or process. In the online
portfolio, once a "buy" order is placed, the current status of the user's account must be
checked to ensure that it contains sufficient funds to cover the purchase and any
transaction fees. If this condition is met, the order must be handled, which entails a
number of processes behind the scenes. In either case, the result of the request must then
be reported back to the user.
The first kind of reaction, in which the presentation of the page is altered, can be handled
either by putting Java code within the page itself or by using special JSP tags. But before
diving into the second type of reaction, it is worth discussing the more general problem of
software engineering.

3.1 Splitting Big Tasks into Manageable Pieces

As with any kind of engineering, software engineering is inherently difficult. No one
person can build a bridge, plane, or building. The same is true of software beyond fairly
small projects. Often a project is so big and complex that it simply cannot all fit into a
single human brain.
For a large project to be manageable, it must be split into smaller pieces. This is true
when many members of a team are working on the same project, so that each knows what
part of the whole he or she will create. It is even true when a project is being undertaken
by a single person. Splitting big problems into smaller ones allows the developer to
concentrate on one thing at a time. Usually, the smaller pieces are easier to design, build,

 47

and test; once built, the individual components can be updated or changed without
worrying about how that change will affect the rest of the system.
A difficult task can be partitioned in many ways. Java itself provides a natural unit of
work in the form of classes, which will be discussed further in Chapter 9. Although these
classes can help define the way work is done, the more fundamental question remains:
what each class should do and which classes each developer should build.
One approach to this question advocates dividing the work into major functional units.
This makes perfect sense, as it is the way most physical engineering is done. When
building a car, one team is likely to be responsible for the engine, another for the
electronics that controls everything, and a third for the exterior. These are natural ways to
divide the work, as each piece is somewhat independent of the others and requires very
different skills.
There is no set recipe for the way in which a software project should be divided, but over
time, an important pattern that advocates dividing the project into three major pieces has
emerged. The first piece will be responsible for modeling the problem to be solved and so
is called the model. This model might be a virtual shopping cart for an online catalog, a
database representing a CD collection, or a set of equations representing a complex
scientific simulation. In each case, the model contains all the information about how the
data is internally stored and the operations that may be performed on that data.
The second piece is responsible for allowing users to interact with this data. This could be
a desktop application written in Java using the Swing API, or it could be an applet or
even a program that controls a huge electronic billboard. The code for this piece contains
everything needed in order to navigate through the data, display the values, modify the
display as needed, and, possibly, allow the user to make changes to the model. Ideally,
the presentation should also be aesthetically pleasing and intuitive to use. This piece is
known as the view.
Finally, the third piece acts to mediate between the first two. Although it allows the user
to request particular data, the view will not itself load that data into the model. In addition,
some data may be restricted to certain users. Such security information should not reside
in either the model or the view. So, the third piece, called the controller, is responsible
for controlling the model, based on instructions from the view, and may also tell the view
to hide certain information, based on data in the model.
In addition to identifying these three pieces, it is important to ensure that they all fit
together and can interoperate. This is done by providing well-defined interfaces between
each pair of components. The view will know how to get data from the model, the
controller will know how to configure the view and the model, and so on.

 48

Splitting the work in this way is known as the model/view/controller paradigm, and it is
very powerful. Not surprisingly, JSPs will act as the view. The controller piece is not
important for simple pages, and so discussion of it is deferred until Chapter 12.
That leaves the model. In the Java world, the model is usually composed of reusable
software components called JavaBeans. These beans provide the logic behind the
stock-purchasing system discussed earlier.
The importance of beans cannot be overstated. Besides being a fundamental Java
specification in their own right, beans are the means for making JavaServer Pages do
interesting and exciting things. Using beans properly allows sites to be built and
maintained much more easily than they would otherwise. On the other hand, confusion
about what belongs on a page versus what belongs in a bean can be a recipe for disaster.
With that in mind, it's time to find out what these bean things actually are.

3.2 Defining Beans

For the moment, forget about Java and consider a real bean. A bean has certain
characteristics, or properties, such as color, size, shape, species, and so on. Not all beans
have the same properties. Coffee beans have a "grams of caffeine" property, which lima
beans do not have. [1]

[1] Pedants may point out that lima beans do have a "grams of caffeine" property; it's just that the value is always zero!

Such people are welcome to try brewing a cup of decaf from lima beans.

It is always possible to determine the value of these properties, although this sometimes
requires a careful chemical analysis. However, imagine if a person could discover the
value of one of these properties by asking the bean. Further, imagine if beans could
change their properties at will; someone could order a bean to set its size to 3 feet or its
color to blue, and the bean would suddenly change. People could then instantly
decaffeinate their coffee beans or double the amount of caffeine for those lengthy early
morning meetings.
Finally, consider a "bean microscope" that could automatically list all a bean's properties.

Note that none of these activities�finding the current state of a property, changing a

 49

property, or discovering which properties are available�would require cutting the bean

open or studying its metabolism or anything similarly complex.
This is now a reasonably good metaphor for a JavaBean. A JavaBean has a set of
properties that can be read or changed. It is also possible to find out the names of the
properties that a bean has available.
Many objects, processes, and other things in the real world can be modeled as a set of
properties. A CD could be described by giving the values of properties representing the
year it was released, the record company that produced it, the list of tracks, and so on.
Likewise, each track has properties, such as the lyrics, the key it is in, and the length in
seconds. Similarly, a stock portfolio can be specified by giving a list of stocks it contains,
along with how many shares of each is held and the initial purchase price. The stocks
themselves have properties, such as current value, volatility, price-to-earnings ratio, and
dozens more. In both of these cases, once the properties of interest have been identified, a
JavaBean can be designed to create a model.
Two things make beans especially useful. The first is that neither Java programmers nor
JSP programmers need to know anything about a bean in advance in order to use it. A CD
bean could be purchased from a bean company, and it would only need to be installed on
the local system for JSP authors to start using it immediately.
The second useful thing about beans is that it does not matter how they go about
manipulating their properties. It is possible for the request for a value to cause the bean to
look up some information in a database. When a bean's property is changed, it could send
e-mail to a system administrator with a notification of the new value. In fact, both
accessing and changing properties can trigger arbitrarily complex actions, but the JSP
author does not need to worry about this. In this sense, beans act as mysterious black
boxes with switches and readouts. Page authors can turn the knobs to change properties
and view the properties off the readouts without ever knowing what is going on inside the
box. This model of a bean is illustrated in Figure 3.1.

Figure 3.1. A bean as a black box.

 50

It is even possible for properties to depend internally on one another. A bean might have
the two properties value1 and value2 and a third, sum, that is always constrained to be
value1 plus value2. This would provide all the functionality necessary to build a simple
JSP-based calculator, and in fact we will shortly see a bean that does this.
As mentioned previously, for the model/view/controller paradigm to work, the three
pieces must fit together easily and naturally. JSPs can interact with beans through three
new tags, discussed in the next section.

3.3 JavaBean Tags

The JavaServer Pages specification provides three basic tags for working with beans: one
that finds the bean and makes it available to the rest of the page, one that gets a property
from the bean, and one that sets one or more properties. Because of the many ways to use
a bean, these tags have a number of variations. These tags and their variations are the
basic gateways between the JSP view and the bean model.
Note that these tags are very different from the usual HTML tags. Tags such as and
 give instructions to the Web browser, saying "present the enclosed text in a bold
font." The tags that will shortly be presented give instructions to the JSP engine, telling it

 51

how to build the HTML that will eventually be sent to the browser. The browser itself
will never see these tags and wouldn't know what to do with them.
In the most basic form, a bean may be made available to a JSP with the following tag:
<jsp:useBean id="bean name" class="bean class"/>

Here bean name will be the name that is used later to refer to the bean. This name has
only two restrictions. First, it must contain only letters, numbers, and the underscore
character.[2] The name must also be unique everywhere it is to be used. This means that
two beans cannot have the same id, and an id cannot be any of the words request,
response, or out, which are reserved by the JSP system.

[2] Technically, it must be a "valid Java identifier," which will make more sense after Chapter 9.

The bean class will be the name of a Java class that defines the bean. Chapter 9
discusses classes in more detail, but for now, a class can be thought of as the collection of
Java code that makes up the bean, just as DNA is the code that makes up a lima bean.
This bean class must be available to the JSP engine. The JSP specification includes
details on how to make classes available to Web applications, which is discussed in
Appendix B.
The trailing slash at the end of the tag is important; it signals that there is no
corresponding </jsp:useBean> close tag. If this slash is missing, an error will occur at
translation time. Examples later in this chapter use a closing tag, but when it is not used,
the JSP engine must be told not to expect it.

Errors to Watch For

The most common problem with the jsp:useBean tag is specifying a class that
the JSP engine cannot find. When the page is tested, this will be reported as a
java.lang.ClassNotFoundException. This error may be caused by a simple
misspelling or typo in the name, or it may be because the file that makes up the
class is not in the right directory.

3.3.1 Getting a Property

Once a bean has been obtained with jsp:useBean, getting a property is as simple as
using the jsp:getProperty tag:
<jsp:getProperty name="bean name" property="property name"/>

 52

Bean name will be the same name that was used in the id field, and property name will
be the name of the property to get. Listing 3.1 demonstrates the use of these tags.

Listing 3.1 A JSP that gets properties from a bean

 <jsp:useBean

 id="bean1"

 class="com.awl.jspbook.ch03.Bean1"/>

 <p>Here is some data that came from bean1:</p>

 The name of this bean is:

 <jsp:getProperty name="bean1" property="name"/>

 The 7th prime number is:

 <jsp:getProperty

 name="bean1"

 property="seventhPrimeNumber"/>

 The current time is:

 <jsp:getProperty name="bean1" property="currentTime"/>

The first thing this JSP does is make the bean available to the page. Here, the id has
some relationship to the class name, but that need not be the case. It is also not necessary
for the jsp:useBean tag to appear right at the top of the page, as long as it appears before
any jsp:getProperty tags. However, putting all the jsp:useBean tags together at the
top of a page makes it easy to see all the beans that a page is using.
Once the bean has been loaded, the jsp:getProperty tag is used to retrieve data from it.
As promised, this hides a number of programming details from the page author. Within
the bean, the code that gets the seventh prime number could simply return it from a
precomputed list of prime numbers, recompute it each time, or pull it out of a database. In
fact, it does the easiest thing and returns the number 17.[3]

 53

[3] If 17 ever ceases to be the seventh prime number, please contact the author, and a replacement bean will be

cheerfully provided.

The method the bean uses to get the current date cannot rely on a similar trick, as the date
changes every time the page loads. This method must therefore have some code to it,
which is shown in Chapter 10.
Finally, note that bean properties can be used anywhere on a page, including within
HTML tags, as in:
<td bgcolor="<jsp:getProperty name="bean1"

 property="color"/>">

Here, the color of a table cell is being pulled out of a bean. For this to work, the color
property must be presented in one of the acceptable forms for HTML, such as #FF0000
or "red." This is another place where the person coding the page and the person coding
the bean must agree.

Errors to Watch For

The only error that can come from the jsp:getProperty tag results from trying
to get a property that the bean does not have. This error would be presented on
the page as
com.sun.jsp.JspException:

getProperty(id): can't find method to read prop

Most likely, this error will arise because of a typo in the property name, which
can simply be corrected. If the JSP does need a property that the bean does not
have, the programmer will have to be asked to add it.

3.3.2 Setting Properties

Of the many ways to set a bean's properties, the simplest looks almost exactly like getting
a property:
<jsp:setProperty

 name="bean name"

 property= "property name"

 value= "property value"/>

 54

Here, name, as before, is the id from the jsp:useBean tag, and property is the name of
the property to set. Value is the new value to assign to the property. The simplest type of
value is a string enclosed in quotes, such as "red" or "3".
Listing 3.2 shows a JSP that uses a bean with two properties related to the time. The
format property allows the JSP author to specify the format in which the time should be
presented, and the currentTime property has the date.

Listing 3.2 A JSP that sets a property

<jsp:useBean

 id="date"

 class="com.awl.jspbook.ch03.DateBean"/>

<jsp:setProperty name="date" property="format"

 value="EEEE, MMMM dd yyyy 'at' hh:mm"/>

<jsp:getProperty name="date" property="currentTime"/>

<jsp:setProperty name="date" property="format"

 value="hh:mm:ss MM/dd/yy"/>

<jsp:getProperty name="date" property="currentTime"/>

<jsp:setProperty name="date" property="format"

 value="yyyyy.MMMMM.dd GGG hh:mm aaa"/>

<jsp:getProperty name="date" property="currentTime"/>

Recall from Chapter 2 that a JSP is evaluated by the JSP engine from top to bottom. So,
the JSP engine will first see the jsp:useBean tag and make the bean available to the page
under the name date. Then, this bean's format property will be set. The exact meaning
of the value is unimportant, although details are available in the documentation for the
java.text.SimpleDateFormat class. The important thing is that when the JSP engine

 55

next goes to get the value of the currentTime property from the bean, the bean will use
the value of the format property to render it.
When it encounters the next jsp:setProperty tag, the JSP engine will replace the old
value of the format property with the new one. This is not a problem; that old value has
already served its purpose. When it is next asked for currentTime, the bean will use the
new value and will present the current time differently. The bean might also present a
slightly different time, as a few milliseconds will have passed since the last
jsp:getProperty.
Hard-coded values such as these format specifications are fine for many purposes. But to
participate in dynamic pages, beans must be capable of interacting with other dynamic
elements.

The Connection Between Forms and Properties

Most interesting dynamic pages are driven at least partially by values that have been
provided by users through forms. Because most program logic resides in beans, it seems
natural that many JSPs take input values from forms, pass these values into beans via
jsp:setProperty tags, and then display other properties representing the result of a
computation.
Fortunately, the JSP architects realized how common this situation would be and
provided another simple tag to accomplish it. If the form is providing a value called
"parameter" and the bean has a property called "parameter", the value can be set with
the tag
<jsp:setProperty

 name="bean name"

 property="parameter"/>

In this case, the value is implied and is assumed to come from the form. Sometimes, the
name of the form parameter and the name of the property will not match. They can be
connected through another variation of the jsp:setProperty tag:
<jsp:setProperty

 name="bean name"

 property="property name"

 param="param name"/>

Here, the JSP will use the form parameter called param name to set the property called
property name.

 56

The most powerful version of the jsp:setProperty tag looks through all the parameters
provided by the form and all the methods provided by the bean and links them
automatically. This version looks as follows:
<jsp:setProperty name="bean name" property="*"/>

If the form provides values called param1, param2, and so on and if the bean has
properties with the same names, everything will match up perfectly. If the form provides
some parameters for which there are no matching properties, these parameters will be
ignored, and no error will occur. The JSP could proceed to do something else with those
parameters, such as pass them on to the bean manually or send them to a different bean
with another jsp:setProperty tag. Likewise, if the bean provides properties for which
the form does not supply values, these properties will simply not be set. The JSP can call
them manually, if needed.
Listing 3.3 shows a page with a simple HTML form. When this form is submitted, the
values will be passed to the page in Listing 3.4, which will pass these values to a bean
and then use the bean to access the values.

Listing 3.3 A form that sends data to a bean

<form action="form_handler.jsp" method="post">

Enter some text: <input type="text" name="textField">

Now select a color: <select name="color">

<option value="red">red

<option value="green">green

<option value="blue">blue

</select>

Do you like cheese?

<input type="radio" name="cheese" value="yes">Yes

<input type="radio" name="cheese" value="no">No

<input

 type="submit"

 name="submit"

 value="Send this info to a bean">

 57

</form>

Absolutely nothing is special about this form; you can hardly even tell that it is a JSP! In
particular, note that the page with the form knows nothing about the bean that will be
receiving the form values. That is handled entirely by the receiving page, which is shown
in Listing 3.4.

Listing 3.4 Processing form inputs with a bean

<jsp:useBean

 id="values"

 class="com.awl.jspbook.ch03.FormBean"/>

<jsp:setProperty name="values" property="*"/>

Here is your text, in the color you chose:

<font color="<jsp:getProperty

 name="values"

 property="color"/>">

<jsp:getProperty name="values" property="textField"/>

When asked whether you like cheese, you said:

<jsp:getProperty name="values" property="cheese"/>

The first line of this example summons a bean into existence and calls it values. The
second line then passes all the values from the form into this bean by setting properties.
This works only because the bean was built to work with this form and so has properties
called text, color, and cheese. These properties are then pulled out of the bean in a few
ways. The text and cheese values are simply displayed, but the color property is used
within a font tag in order to set a color.
The bean in this example is acting like a simple glass box; values are put in with the
jsp:setProperty tag and can then be viewed with the jsp:getProperty tag. However,
once a bean has been given values, it can do much more than simply hold them and give
them back.
The next example, Listing 3.5, illustrates this. This JSP uses a bean that acts like a simple
calculator; it has two properties, called value1 and value2, which may be set from a
form. The bean also has a third property, sum, which it computes by adding value1 and
value2.

 58

Listing 3.5 A bean calculator

<jsp:useBean

 id="calc"

 class="com.awl.jspbook.ch03.CalcBean"/>

<jsp:setProperty name="calc" property="*"/>

The sum of your two numbers is

<jsp:getProperty name="calc" property="sum"/>

There you have it: a calculator in just four lines of code! The form that calls this page is
very simple and so is not shown here, although it may be found on the CD-ROM
accompanying this book. As in Listing 3.4, the form knows nothing about the bean but
simply provides two text boxes named value1 and value2, and the bean takes care of the
rest.
Having conveyed how well beans and forms work together, it's time for a little fine print.
For this cooperation to work, it must be an echo of cooperation between the person
writing the bean and the person writing the form. They must agree on the names of the
form variables, which ones will be multivalued, and so on. This should not be any burden
to either person, as the bean interface makes both their jobs easier.
It is important to note that each time a user visits the calculator page, the jsp:useBean
tag will create a brand new instance of the CalcBean. This is a good thing, as it means
that if several users access the same page at the same time, they will each get a copy of
the bean, with different values for all the properties. This ensures that if one person tries
to use the calculator from Listing 3.5 to compute 100 + 156 at the same time that another
user is computing 62 + 34, they will get 256 and 96, respectively.
This may not seem like a big deal; in fact, many people would probably not even have
thought that this would be an issue. However, in some Web application frameworks,
developers must give a great deal of thought to how their systems will behave if many
users access the site simultaneously. Fortunately, using beans and JSPs means that
developers can write their pages as if only one user will be using them at a time, and they
will automatically work properly even when there are many simultaneous users.

Errors to Watch For

Attempting to set a property that bean does not possess will result in the

 59

following error:
com.sun.jsp.JspException:

 setProperty(id): Can't Find the method for setting prop

As in attempting to get a nonexistent property, this error may be a misspelling,
or the bean developer must add the needed property. Note that this error will not
be generated when setting a bean's properties from a form. If the form names
and properties do not match up, the mismatched values will simply be ignored.
This can be worse, as it means that a page may not work without an obvious
error message to explain why.

Form Values

Unfortunately, simple things are seldom perfect; a bug is lurking in the simple calculator
of Listing 3.5. If a user enters on the form a value that is not a number, such as A, the
page will return a cryptic error message. The bean programmer could avoid this by
constructing the bean in such a way that it would simply ignore bad inputs. This would
hardly be an improvement, though, as the page would return an incorrect answer instead
of an error. At least with the error message, the user knows that something is awry.
What is needed here is a means for the bean to tell the page whether the inputs were valid
and for the page to display different text in either case. This is possible, but such
interaction between a model and a view is best mediated by a controller, so this will be
deferred until Chapter 12.
It would also be possible to use some JavaScript within the page to ensure that the values
are legal. This could be done by adding to the form an onSubmit value, which would
check that the values look like numbers and would pop up an error dialogue if they do not.
The advantage to this approach is that the feedback is presented to the user immediately,
without having to pass all the data to the server. This also means one less condition the
server needs to check and one less submission it needs to process. For very popular
applications, reducing the strain on the server in such a way can make a noticeable
difference in overall system performance.
Unfortunately, using JavaScript has lots of downsides. First, getting the same JavaScript
to work on multiple different browsers can be surprisingly difficult. Browsers'
incompatibilities and fragility are especially evident when JavaScript is involved. Many
Web programmers decide to target only one browser, making their site unavailable to a
portion of their potential audience. Alternatively, it is possible to write many different
versions of the JavaScript code and have the server include the appropriate version based

 60

on which browser is being used. JSPs can make it relatively painless to detect the browser
being used and include appropriate JavaScript; this will also be demonstrated in Chapter
4. Even using JSPs, all that JavaScript code will still need to be tested and maintained.
In addition to the compatibility issues, some users choose to turn off JavaScript, and
some browsers, such as those included in many mobile phones, don't support JavaScript
at all. This means that it will be necessary to write the code to handle the form validation
on the server anyway.
Finally, it is generally good practice to have all related code in one place. Because the
form will ultimately be processed on the server, it makes aesthetic sense to keep the
validation code there as well. This way, if and when the business logic changes, it will
not be necessary to hunt down the JavaScript code that checks values and the completely
separate Java code that uses these values.

3.4 Making Data Available Throughout an

Application

So far, all the beans used have been fairly transient entities: They are summoned into
existence through a jsp:useBean tag at the top of a page and disappear when the page
ends. This is usually a good thing; in fact, this is the very property that allows each user
to get his or her own version of the bean.
However, in many situations, it is useful to have a bean last longer than a single page. A
simple mechanism allows JSP authors to specify any of several lifetimes for their beans.
These lifetimes are called scopes, and they indicate the period of activity during which
the bean is available. If a bean is created and placed in a scope, any changes to that bean
made via jsp:setProperty tags will be visible to other pages using the same bean.
A scope may be given to a bean by adding scope= to the jsp:useBean tag:
<jsp:useBean

 id="bean name"

 class="bean class"

 scope="scope"/>

Legal values for the scope property are "page", "request", "session", and
"application". Each may be useful in different situations.

 61

3.4.1 The Page Scope

Beans created in the page scope, the smallest scope, will be available only within the JSP
from which they were created. It is reasonable to think of the page scope as spanning a
single JSP file.
This means that if one page includes another by using a jsp:include tag and that if they
each use a jsp:useBean tag to obtain the same bean in the page scope, they will each in
fact get a different instance of the bean. This is illustrated in Listing 3.6.

Listing 3.6 A page that uses page scope

<jsp:useBean

 id="bean1"

 class="com.awl.jspbook.ch03.AnimalBean"

 scope="page"/>

At first, our animal is:

<jsp:getProperty name="bean1" property="animal"/>

<jsp:setProperty

 name="bean1"

 property="animal"

 value="octopus"/>

After setting the property, the animal is:

<jsp:getProperty name="bean1" property="animal"/>

<jsp:include page="page_scope2.jsp"/>

This example creates a bean, places it in the page scope, and then shows the value of the
bean's animal property. This bean comes with a default value for this property, "ferret",
which will be displayed by the first jsp:getProperty. This property is then changed to
"octopus" and redisplayed, to prove that it changed. Then the page includes another
page, which is shown in Listing 3.7.

Listing 3.7 An included page that reuses the bean

 62

<jsp:useBean

 id="bean1"

 class="com.awl.jspbook.ch03.AnimalBean"

 scope="page"/>

In the include, the animal is:

<jsp:getProperty name="bean1" property="animal"/>

This page obtains the same bean, and once again displays the animal property. Because
the bean is in the page scope, a completely new instance of the bean will be created when
the included page reaches the jsp:useBean statement; this instance will still have the
original value, "ferret", and so the page will display the following:
At first, our animal is: ferret

After setting the property, the animal is: octopus

In the include, the animal is: ferret

3.4.2 The Request Scope

The request scope is larger than the page scope; beans created in the request scope will
last from the time they are first created until the last of the data is sent to the user. Most
significantly, this means that the same instance of the bean will be available to all
included pages, which can be demonstrated by changing scope="page" to
scope="request" in Listings 3.6 and 3.7. When this is done, the resulting page will look
like this:
At first, our animal is: ferret

After setting the property, the animal is: octopus

In the include, the animal is: octopus

The request scope is useful when multiple components of a page are scattered among
several files that include one another, and all need access to the same data. As this is the
most common situation, the request scope is the default. In all the previous examples, in
which no scope was specified, we were in fact using the request scope without knowing
it.

3.4.3 The Session Scope

Both of the scopes encountered so far associate data with pages or pieces of pages. But
because users, not pages, should be the focus of a site, a way is needed to tie data to a
particular user so it will be available and adjustable from whichever pages the user visits.

 63

An obvious example of this is a shopping cart. Multiple users can all see the same
"checkout" page of a shopping site, but each user will see his or her own selections.
Likewise, many users may view a particular item, but when one user elects to buy it, the
item goes into that person's shopping cart and no one else's.
In JSP terms, data associated with a user is in the session scope. A session does not
correspond directly to a user but rather to the period of time the user spends at a site.
Typically, this period is defined as extending from the first visit to the site, through the
point at which the user has not accessed any pages on the site for more than half an hour.
Thereafter, the session will have expired, and any beans in the session scope will
disappear. Listing 3.8 demonstrates a simple use of the session scope to keep track of
how many times a user has accessed the site.

Listing 3.8 A counter bean in the session scope

<jsp:useBean

 id="counter"

 class="com.awl.jspbook.ch03.CounterBean"

 scope="session"/>

<jsp:setProperty

 name="counter"

 property="incrementCount"

 value="1"/>

You have visited this page

<jsp:getProperty name="counter" property="count"/>

time(s).

This example doesn't look like anything special, but a user who accesses the page and
repeatedly clicks the browser's reload button will see the counter steadily climb. Two
things make this page work. The first is the way the incrementCount property works.
When this property is set, it adds its value to the count property, much as Listing 3.5
added the value1 and value2 properties to set the sum property.
More important, the secret to this page's functionality is the session scope, which keeps
the bean around even after the page completes. If the scope were changed to page or
request, the counter would stay stuck at 1 perpetually.

 64

The session scope extends across multiple pages, as well as across individual pages
multiple times. If the jsp:useBean and jsp:setProperty tags were copied into another
page, the counter would then register the total number of times the user had visited both
pages during the current session.

3.4.4 The Application Scope

The application scope is the largest of the available scopes. Beans placed in the
application scope will be available to all pages, for all users, until the Web application is
shut down or restarted. This scope is useful for displaying global information, such as a
"quote of the day" that might be displayed at the bottom of every page across a site. The
application scope can also be used to create a counter that displays the total number of
times a page has been accessed. A simple modification to Listing 3.8 counts how many
times each user has accessed a page: To make this global, change scope="session" to
scope="application".

3.5 Special Actions When Beans Are Created

Now that beans can live beyond the scope of a single page, any given instance of a
jsp:useBean tag may or may not create a new instance of a bean. Often a page will need
to take a special action when the bean is first created.
This can be done with a simple extension to the jsp:useBean tag. So far, this tag has
been used without a closing /jsp:useBean tag. If there is a matching close tag, anything
in the body between the open and close tags will be evaluated when the bean is created
and not subsequently.
The content enclosed by these tags can be anything at all. For a start, it can be plain text.
Listing 3.9, a slight modification to Listing 3.8, illustrates this ability.

Listing 3.9 Displaying text when a bean is created

<jsp:useBean

 id="counter2"

 class="com.awl.jspbook.ch03.CounterBean"

 scope="session">

 65

Welcome to the site!

</jsp:useBean>

With this change, the user will see the message "Welcome to the site" when the bean is
created. On the user's subsequent visits to this page, or any other using the counter bean,
the message will not be displayed. Note that the identifier counter2 is used to distinguish
this bean from the one used in Listing 3.8. If this were not done, the counter would
register how many times the user had been to either page, and if counter.jsp were visited
before counter2.jsp, the welcome message would not show up.
In addition to text, the initialization block can contain jsp:setProperty tags. This can
be useful when the bean needs to have certain values before it is used. In some cases,
these default values can be placed in the bean itself, such as the initial value of 0 for the
number of visits in the counter bean. In other cases, the values with which the bean needs
to be initialized may depend on the current user or the page or any of thousands of other
possibilities. Rather than putting values with these kinds of dependencies into the bean
code, it makes more sense to let the page set up the beans as needed.
Listing 3.10 shows another addition to Listing 3.8. This time, the bean will be told the
name of the page on which it was created.

Listing 3.10 Setting a value when a bean is created

<jsp:useBean

 id="counter3"

 class="com.awl.jspbook.ch03.CounterBean"

 scope="session">

<jsp:setProperty

 name="counter3"

 property="firstPage"

 value="counter3.jsp"/>

Welcome to the site!

</jsp:useBean>

<jsp:setProperty

 66

 name="counter3"

 property="incrementCount"

 value="1"/>

The first page you visited was

<jsp:getProperty name="counter3" property="firstPage"/>

You have seen

<jsp:getProperty name="counter3" property="count"/>

page(s) on this site.

The bean will now keep track of where it was created. If this bean were then used on
multiple pages, it could report on the total number of pages visited, as well as the first
page.
At this point, it is natural to wonder whether there are corresponding close tags for
jsp:getProperty and jsp:setProperty. In fact, there are not. Although it is often
necessary to perform different actions, depending on whether a property is set, this is
done using special JSP tags called conditionals, which will be discussed in the next
chapter.

3.6 Making Beans Last Forever

Although it is not a scope, a related technology extends the lifetime of a bean. Beans can
be frozen by saving their contents into files, and these files can then be transparently
turned back into beans when they are needed.
The mechanism to turn beans into files is called serialization, a built-in facility of the
Java programming language. Serialization is also very useful to JSP authors because it
allows beans to be tailored, or customized, before they are used.
For example, a software company might make a bean that computes how quickly money
in a bank account will grow. One property of this bean would be the interest rate. Many
different banks could purchase this bean, set the interestRate property to the
appropriate value, and then save the bean.
When they create their Web pages, the JSP authors at these banks can use the standard
bean tags to access the bean, and none of the pages they create will need to worry about
the interest rate. This also makes these sites easier to maintain. When the interest rate

 67

changes, the administrator will simply need to replace the serialized file with one
containing the new rate, and all the pages will automatically use the new value. In a sense,
serialization can be used to "bake in" values that are appropriate to a site. JSPs can then
use these values as if they were intrinsic to the bean.
The details of how serialization is done are beyond the scope of this book, but many
programs hide the details and make it easy to create such frozen beans. Sun provides one
called the Bean Box, although this is targeted primarily for people using beans to build
graphic front ends and is overkill for the kinds of beans used in JSPs. A much simpler
editor from Canetoad Software is included on the CD-ROM for this book, along with
instructions for its use.
Using a serialized bean is no more complicated than creating a bean from scratch; it
simply requires a slight variation to the jsp:useBean tag:
<jsp:useBean

 id="bean name"

 beanName="bean name"

 type="bean class"/>

Here, id is the name by which the JSP will use the bean, the same as always, and
beanName should be the name of a file containing a serialized bean. By convention, such
files end with the .ser extension, which should not be included in the name. Finally, type
is the class or interface for which the bean is an instance. Note that type is used instead of
class because the class is implicitly provided by the serialized file. An instance always
knows what class it is an instance of, and this is true even when that instance has been
stored in a file. The type is still necessary because the JSP still needs to assign a type to
the variable that will hold the bean. In practice, the type can usually be thought of as the
bean's class.
Listing 3.11 shows a JSP that uses a serialized bean to get information about a record, in
this case "Tinderbox" by Siouxsie and the Banshees.

Listing 3.11 Using a serialized bean

<jsp:useBean id="album" beanName="tinderbox3"

 type="com.awl.jspbook.ch03.AlbumInfo"/>

<body

 bgcolor="<jsp:getProperty

 name="album"

 68

 property="bgColor"/>"

 text="<jsp:getProperty

 name="album"

 property="textColor"/>">

<h1><jsp:getProperty name="album" property="name"/></h1>

Artist: <jsp:getProperty name="album"

 property="artist"/><p>

Year: <jsp:getProperty name="album" property="year"/></p>

This looks much like the other examples in this chapter, except for the jsp:useBean tag
and the fact that there is no obvious place where the properties have been set. The reason
is that they are not set in the JSP but have already been stored in the serialized file.
It would be nice if this JSP could also display the list of tracks, but there is a problem. In
general, the page won't know in advance how many tracks are on a given CD. The bean
could have a separate property for each track, and the page could display any fixed
number of tracks in the obvious way:
<jsp:getProperty name="album" property="trackName1"/>

<jsp:getProperty name="album" property="trackName2"/>

<jsp:getProperty name="album" property="trackName3"/>

However, if the CD has only two tracks, this will display an extra bullet with no name
next to it. If the CD has four or more tracks, some won't get shown at all. What is needed
is a way to repeat some region of HTML, once for each track in the bean. This is called
iteration and is covered in the next chapter.
This use of serialization makes beans behave a little like a database. Perhaps the
"tinderbox" bean came as part of the collection of beans for all of the Banshees' albums.
To create pages for these others, it would be necessary only to change the beanName to
"Hyaena" or "Juju", or so on. In fact, the deep connection between beans and databases
is explored more fully in Chapter 6.

3.7 Java News Today and Beans

The Java News Today staff loves beans and is planning to build the majority of the JNT
site around bean technologies. To start with, beans will allow JNT to add to the site a new

 69

feature: a daily quiz consisting of a single multiple-choice question. This quiz will appear
in the right-hand navigation bar right above the list of sections. Of course, in order to
make this new component easy to work with, it will be stored in a separate file called
quiz.jsp, which will be included in the navigation bar with a jsp:include tag. The new
version of the navigation is shown in Listing 3.12.

Listing 3.12 The new navigation bar

<div class="bordered">

<jsp:include page="quiz.jsp"/>

</div>

Now, onto the quiz itself. Beans have two aspects that will make this feature very easy to
add. The first is that the user will respond to the quiz through a form; as we have seen,
beans excel at handling form inputs. The second concerns the way the questions will be
stored. If the questions were placed directly in the HTML, it would be a pain to update
them. Instead, the questions and the correct response will be stored in a serialized bean,
which can be updated using any of several available bean editors. Listing 3.13 shows how
this bean will be used in quiz.jsp.

Listing 3.13 The daily quiz

<jsp:useBean

 id="quiz"

 beanName="todaysQuiz3"

 type="com.awl.jspbook.ch03.QuizBean"/>

<jsp:getProperty name="quiz" property="question"/><P>

<form action="quiz_result.jsp" method="POST">

 <input type="radio" name="userGuess" value="1">

 <jsp:getProperty name="quiz" property="answer1"/>

 <input type="radio" name="userGuess" value="2">

 <jsp:getProperty name="quiz" property="answer2"/>

 <input type="radio" name="userGuess" value="3">

 <jsp:getProperty name="quiz" property="answer3"/>

 70

 <input type="Submit" name="Guess" value="Guess">

</form>

There are no new surprises here; the serialized bean is obtained with the jsp:useBean
tag, and properties are put on the page with the jsp:getProperty tag. Recall from
Listing 3.4 that it is not necessary for a form page to obtain a bean, even if the form will
ultimately be sending data to that bean. This is still true; in this example, the bean is
being used not directly with the form but only to obtain blocks of text that are displayed
within the form.
The JNT designers are now ready to start thinking about personalization, at least at a very
high abstract level. Even though it is not yet clear how personalization will work, it is
safe to assume that every user will be modeled as a bean and that this bean will have
various properties describing the user's preferences. This is enough to start laying some
groundwork. To start with, the designers will use this bean to customize the header by
displaying the user's name, if it has been provided. This is shown in Listing 3.14.

Listing 3.14 The header, with a bean property

<jsp:useBean id="user"

 class="com.awl.jspbook.ch03.UserInfoBean"

 scope="session"/>

<center><h2>Java News Today: Welcome!</h2></center>

<div class="left">

 Hello <jsp:getProperty name="user" property="name"/>!

</div>

To prepare further for customization, a link will also be added to the left navigation bar.
With the addition of the link and the quiz, the front page is starting to look like a real site.
It is shown in Figure 3.2.

Figure 3.2. The new JNT home page.

 71

It is also possible to use custom values in the style sheet: for example, to change the color
behind the navigation bar and header. This is illustrated in Listing 3.15.

Listing 3.15 The style sheet, with a bean property

<jsp:useBean id="user"

 class="com.awl.jspbook.ch03.UserInfoBean"

 scope="session"/>

TABLE.form { border-style: groove;

 border-color: #004400; }

TD.label { border-style: solid;

 border-width: 1px;

 border-color: #00aa00;

 background: #<jsp:getProperty

 name="user"

 property="bannerColor"/>;

 color: #000000;

 padding-right: 5px }

 72

TD.form { border-style: solid;

 border-width: 1px;

 border-color: #004400;}

TD.borders { background:

 #<jsp:getProperty

 name="user"

 property="bannerColor"/>; }

DIV.bordered { border-style: groove;

 border-color: #004400; }

DIV.left { margin: 0px 0px 0px 0px;

 padding: 0px 0px 0px 0px;

 text-align: right; }

There is one small catch to changing the colors. The little corner bit, which is used to
give the site a slightly smoother look, is an image, and its color is not controlled by the
style sheet. It will therefore look noticeably out of place if the colors are changed. This
could be solved by making part of the image transparent in a clever way, but it is also
possible to generate the image dynamically so that its colors match the site. The
advantage of the latter technique is that it makes it possible to handle an image with
multiple different colors that all need to match colors on the site. The disadvantage is that
this requires some advanced techniques, and so it will not be possible to discuss this until
Chapter 14.
Difficulties with the image aside, it is already possible for the user to modify these values,
thanks to the fact that the bean is in the session scope. Setting new values can be done by
providing a simple form that will set the name and color attributes. Because the bean is in
the session scope, these values, once set by such a form, will remain set until the session
expires or the user changes them. Listing 3.16 shows the customization form, and the
page as seen in a browser is shown in Figure 3.3.

Figure 3.3. The JNT customization page.

 73

Listing 3.16 The customization form

<jsp:include page="top.jsp"/>

<table class="form">

<form action="customize_handler.jsp" method="post">

<tr>

 <td class="label">Background color:</td>

 <td><input type="text" name="bgColor"></td>

</tr>

<tr>

 <td class="label">Banner color:</td>

 <td><input type="text" name="bannerColor"></td>

</tr>

<tr>

 <td class="label">Text color:</td>

 <td><input type="text" name="textColor"></td>

</tr>

 74

<tr>

 <td class="label">Your name:</td>

 <td><input type="text" name="name"></td>

</tr>

<tr>

 <td colspan="2" align="right">

 <input type="submit" name="go" value="Set Preferences">

 </td>

</tr>

</form>

</table>

<jsp:include page="bottom.jsp"/>

This is yet another standard HTML form. As expected, the fun happens on the receiving
page, which simply sets the bean and notifies the user that his or her preferences have
been changed. This is shown in Listing 3.17.

Listing 3.17 The customization handler

<jsp:include page="top.jsp"/>

<jsp:useBean id="user"

 class="com.awl.jspbook.ch03.UserInfoBean"

 scope="session"/>

<jsp:setProperty name="user" property="*"/>

Your preferences have been set!

<jsp:include page="bottom.jsp"/>

These three examples should demonstrate how easy it is to use beans in order to make
sites dynamic. On one page, the bean is simply used to display values. Another page has
a very simple form that sends values to the bean in order to change these values. Finally,

 75

a third page uses a single jsp:setProperty tag to do the setting. From then on, the new
values will be available to the first page.
Finally, to tie it all together, a link to the customization page can be added to the
navigation bar, as shown in Listing 3.18.

Listing 3.18 Adding a link to the customization page

<jsp:include page="top.jsp"/>

<jsp:useBean id="user"

 class="com.awl.jspbook.ch03.UserInfoBean"

 scope="session"/>

<jsp:setProperty name="user" property="*"/>

Your preferences have been set!

<jsp:include page="bottom.jsp"/>

Although customization is proceeding nicely, things are not looking as good for the quiz.
Unfortunately, it is not yet possible to write the result page, which will state whether the
user's guess was correct. This will require one of those conditionals mentioned earlier and
so will have to wait for the next chapter. For the moment, however, it is possible to create
a page that will at least tell the user what the right answer is, along with the user's guess.
This is shown in Listing 3.19 and illustrated in Figure 3.4.

Figure 3.4. The placeholder quiz result page.

 76

Listing 3.19 The quiz result page

<jsp:include page="top.jsp"/>

<%-- Start content --%>

<jsp:useBean

 id="quiz"

 beanName="todaysQuiz3"

 type="com.awl.jspbook.ch03.QuizBean"/>

<jsp:setProperty name="quiz" property="*"/>

You guessed

<jsp:getProperty name="quiz" property="userGuess"/>.

The correct answer is

<jsp:getProperty name="quiz" property="correctAnswer"/>.

<%-- End content --%>

<jsp:include page="bottom.jsp"/>

 77

Again, this is very straightforward; the guess is sent with a standard jsp:setProperty
tag to the bean, and then both the guess and the right answer are shown with
jsp:setProperty tags. Note again how easy it was to create a new JNT page by adding
the two appropriate jsp:include tags.

3.8 Future Directions

As noted earlier in this chapter, there is more to beans than the names of the properties.
One other feature beans provide is the ability to notify one another when certain events
have occurred. For example, a bean used on one page could notify a bean used on another
that a user had just visited that page, provided some input on a form, or any of a million
other things. JSPs have no built-in facility to connect beans in this way, so this ability
will not be discussed in any further detail. However, it would not be surprising to see this
as a feature in a future version of the JSP spec, so stay tuned. In the meantime, there is no
reason interested programmers or page authors cannot use this ability manually.
A number of products that make beans even more powerful and useful are available. Sun
provides a set of classes, called the Infobus, that further extends the way beans can
communicate with one another. The Java Activation Framework package adds the ability
for beans to discover dynamically the type of pieces of data and the available methods
related to that type.
Finally, the Java 2 Enterprise Edition makes extensive use of some additional types of
beans, collectively known as Enterprise JavaBeans, or EJBs. EJBs provide a suite of
methods for managing persistent data, ensuring that beans are kept in a consistent state,
and using beans in distributed environments, where different beans may reside on
different computers on a network. EJBs are beyond the scope of this book, but it is likely
that they will more and more converge with JSPs.

3.9 Summary and Conclusions

Beans are Java's standard component model and integrate well with JSPs. Beans help
separate Java code from HTML by providing standard tags that allow the JSP to get data
to and from the bean, via the bean's properties. Beans also make writing dynamic pages
that use forms easier, by providing easy ways to send form data into beans and get results

 78

out. By supporting serialization, beans also help pull changeable data out of pages, which
allows a bean to be customized and stored. This customization can tailor a bean for a site
or a period of time.
Chapter 10 discusses how to write beans in more detail. In the meantime, the source code
for all the beans used in this chapter is included on the CD-ROM for interested readers to
explore.
In order to complete the calculator and quiz examples from this chapter, a page must be
able to customize itself based on certain criteria. In order to do this, the page will need to
use the special JSP tags from the standard library. This is the topic of the next chapter.

3.10 Tags Learned in This Chapter

jsp:useBean Makes a bean available to a page
Parameters:
 id: The name by which this bean will be known to the rest of the page
 class: The Java class that represents the bean
 beanName: For serialized beans, indicates the file where the bean is stored
 type: For serialized beans, indicates the type

 scope: The scope�page, request, session, or application�in which the bean

 is stored.
Body: Optional arbitrary JSP code or text. If present, a body will be evaluated when
the bean is created.

jsp:useBean Sets a property in a bean
Parameters:
 name: The name of the bean; should match the id in the useBean tag
 property: The name of the property to set, or "*" to set all available properties
 from a form
 value: If present, specifies the value to set; if not present, the value from the
 form
Body: None

jsp:useBean gets a property from a bean

 79

Parameters:
 name: The name of the bean; should match the id in the useBean tag
 property: The name of the property to get
Body: None

 80

Chapter 4. The Standard Tag Library

Chapter 3 explained how to get values from beans to pages with the jsp:getProperty
tag, along with a number of limitations in this process. There was no good way to display
the tracks on a CD, because the page has no way to know how many tracks a bean will be
holding. The quiz was unable to determine whether the user's answer was correct,
because the page has no way to compare two values in a bean.
Both of these problems can be solved by a new set of tags: the standard tag library.
Although these tags are not technically a portion of the JSP specification, they are closely
related and can be used in any application server that supports JSPs. This chapter looks at
what these tags can do, after a few words on how tags in JavaServer Pages work in
general.

4.1 Tag Libraries

We have already seen tags that deal with things ranging from including other JSPs to
manipulating beans. These tags are all useful and perform their specific tasks well, but
almost from the beginning, the authors of the JSP specification realized that no set of tags
could possibly do everything that everyone would need from JSPs. To address that issue,
those authors provided a mechanism for programmers to create new tags that could do
anything possible and an easy way for pages to use these custom tags. The topic of the
creation of new tags is covered in Chapter 13. Listing 4.1 illustrates how a page loads and
uses a tag.

Listing 4.1 A JSP that uses a custom tag

<%@ taglib prefix="awl"

 uri="http://jspbook.awl.com/samples" %>

The time, in two different formats:<p>

<awl:date format="EEEE, MMMM dd yyyy 'at' hh:mm"/>

<awl:date format="hh:mm:ss MM/dd/yy"/>

The tag library is loaded with the first line. The URI (Uniform Resource Identifier)
specifies the location of the tag library definition, and the prefix specifies the name that
will be used to access the tags. Here, the prefix is awl, but it could be anything, as long as

 81

it is used consistently. One of the tags from this library, time, is used twice in the last
two lines. The name of the tag is prepended by the prefix specified at the top.[1]

[1] Formally, the tag lives in an XML namespace specified by the prefix. Custom tags can be loaded with any

namespace; formally, the portion before the colon is not part of the name. In the text however, this prefix will always

be included to avoid possible confusion between tags, such as c:param and sql:param.

The awl:time tag itself simply sends the current time to the page, in a format specified
by the format property. If this looks familiar, it is because this does essentially the same
thing as Listing 3.2. That example used a bean with an input for the format and an output
for the time. Using a custom tag, the input is specified as a named property, and the
output is implicit in the way the tag works.
Technically, neither example was particularly good. Because they play the part of models
in the model/view/controller paradigm, beans should not be concerned with how their
data will be presented. Hence, the bean used in Listing 3.2 should not have had to deal
with formatting issues. Similarly, tags are intrinsically part of the view portion and so
should not deal directly with data, but the awl:time tag in Listing 4.1 holds data in the
form of the current time. With some effort, the standard tag library can help make such
separations of roles between tags and beans easier to manage, as will be seen later in this
chapter.

4.2 Tags with Bodies

Custom tags can do more than output data controlled by parameters. A custom tag can
have a body, which it can control in arbitrary ways. Recall a similar tag, jsp:useBean,
which renders its body only when the bean it is accessing is created. Listing 4.2 shows
such a custom tag that can be used to display its body, hide it, or even reverse it. The
result is shown in Figure 4.1.

Figure 4.1. The result of a custom tag.

 82

Listing 4.2 A custom tag with a body

<%@ taglib prefix="awl"

 uri="http://jspbook.awl.com/samples" %>

<awl:maybeShow show="no">

You can't see me!

</awl:maybeShow>

<awl:maybeShow show="yes">

 The time is:

 <awl:date format="hh:mm:ss MM/dd/yy"/>

</awl:maybeShow>

<awl:maybeShow show="reverse">

 The time is:

 <awl:date format="hh:mm:ss MM/dd/yy"/>

</awl:maybeShow>

This example loads the same tag library used in Listing 4.1 and again specifies that it will
be using the awl prefix to access the tags. The tag used this time is called
awl:maybeShow, and it has a parameter, show, that controls what the tag should do with

 83

its body. This parameter may be set to no, in which case the body is hidden from the page;
yes, in which case the body is displayed; or reverse, in which case the body is shown
backward.
Note that the body of the awl:maybeShow tag may include anything, including other JSP
tags. This was also true of the jsp:useBean tag and in fact is true of any custom tag that
has been properly programmed. This property is described by saying that JSP tags can be
nested. From here on, it will simply be assumed, unless otherwise noted, that the body of
any tag can contain any other tag.

4.3 Dynamic Attributes in Tags

For the standard tag library to be able to do all the wonderful things it claims to do, the
tags will need to take parameters that are more complicated than such simple instructions
as "yes" and "no." In fact, the parameters to the standard tag library comprise a full
language, although one that is significantly simpler than Java itself and much better
suited for building pages.
This language is built into the very core of JSPs in the latest version of the JSP
specification. This means that programmers creating new tags may use this language for
their own purposes; this will also be illustrated in Chapter 13.
Expressions in this language are surrounded by braces and preceded by a dollar sign. The
simplest kinds of expressions in the language are constants, such as strings or numbers:
${23}

${98.6}

${'hello'}

These expressions don't mean anything on their own, but when used as the value of a
parameter, they are evaluated by the expression language before they are sent to the tag.
Because numbers and strings evaluate to themselves, this means that the following two
expressions mean the same thing:
<awl:maybeShow show="${'yes'}">

<awl:maybeShow show="yes">

Note that within an expressions, literals are surrounded by single quotes and that the
whole expression is surrounded by double quotes.

 84

Errors to Watch For

If an expression is written incorrectly, such as leaving off a closing quote or a
brace, a JSP page error will report something like
An error occurred while parsing custom action

Now for the fun part: The scripting language can also refer to beans and properties of
beans. Listing 3.1 used a bean to display some static properties, including the seventh
prime number. Suppose that bean were loaded into a page with this tag:
<jsp:useBean id="bean1" class="com.awl.jspbook.ch03.Bean1"/>

In that case, then the scripting language would refer to the seventh prime number
property as
${bean1.seventhPrimeNumber}

Note the pattern: first, the name of the bean as defined in the jsp:useBean tag, then a dot,
then the name of the property. This is not exactly equivalent to the jsp:getProperty tag,
as dropping this script fragment into a page will not display the value. In fact, it will not
do anything at all. However, this would serve perfectly as a way to send the seventh
prime number to a custom tag. Admittedly, there would probably never be any need to do
such a thing, but often it will be necessary to send a value from a form to a tag. We now
have the means to do this: Send the form inputs into a bean with the jsp:setProperty
tag and then send the value from the bean to a tag with a scripted parameter.

Errors to Watch For

If an attempt is made to access a property that does not exist, a page error that
looks like the following will be generated:
Unable to find a value for "property"

in object of class "beanClass"

Listing 4.3 shows a simple form that lets the user choose whether to show, hide, or
reverse a block of text.

Listing 4.3 A form that will be used by a tag

<html>

<body>

 85

<form action="show_result.jsp" method="post">

Shall I display the tag body?

<select name="shouldShow">

<option>yes

<option>no

<option>reverse

</select>

<input type="Submit" name="Go" value="Go">

</form>

</body>

</html>

The page that will use this form is shown in Listing 4.4. It combines many of the things
that have been discussed so far: a bean, the awl:maybeShow tag, and a scripted parameter.

Listing 4.4 Using a bean and a tag together

<%@ taglib prefix="awl"

 uri="http://jspbook.awl.com/samples" %>

<jsp:useBean

 id="form"

 class="com.awl.jspbook.ch04.FormBean"/>

<jsp:setProperty name="form" property="*"/>

<awl:maybeShow show="${form.shouldShow}">

 The time is:

 <awl:date format="hh:mm:ss MM/dd/yy"/>

</awl:maybeShow>

The first portion of this example should be old hat by now: First, a tag library is loaded,
and then a bean is obtained and fed the form values. The second part uses the tag almost
exactly as in Listing 4.2. The only difference is that the show parameter is not a fixed
value but comes from the bean via a script. Using a bean, a custom tag, and the scripting
language, we can now dynamically control a whole block of text!

 86

4.4 Displaying Expressions

The ability to use a bean to control a tag is certainly powerful, but often such values must
be shown to the user rather than used by a tag. A standard tag, c:out, renders values to
the page, and the use of this tag is quite straightforward. Listing 4.5 revisits the example
from Listing 3.1, which displayed various values from a bean. Listing 4.5 use the same
bean but now displays values using the new tag.

Listing 4.5 The out tag

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<jsp:useBean

 id="bean1"

 class="com.awl.jspbook.ch03.Bean1"/>

<p>Here is some data that came from bean1:</p>

The name of this bean is:

<c:out value="${bean1.name}"/>

The 7th prime number is:

<c:out value="${bean1.seventhPrimeNumber}"/>

The current time is:

<c:out value="${bean1.currentTime}"/>

Because this does exactly the same thing as Listing 3.1, it may not be immediately clear
why anyone would use the c:out tag instead of the jsp:getProperty tag. Although
c:out is somewhat shorter, the real reason to use it is that it has many advantages, all of
which are derived from the fact that what is being shown is the result of a script, not a
simple property.

 87

The expression language allows page developers to manipulate properties in many ways.
For example, it is possible to write an expression that will add two numbers right in the
page, without needing to rely on the bean to do it. Listing 4.6 shows another version of
our calculator from Listing 3.6, only doing the addition in the page.

Listing 4.6 Addition in the expression language

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<jsp:useBean

 id="calc"

 class="com.awl.jspbook.ch04.CalcBean"/>

<jsp:setProperty name="calc" property="*"/>

The sum is:

<c:out value="${calc.value1 + calc.value2}"/>

It is now possible to extend this easily to do more complex calculations, such as finding
the average of the two numbers or raising one to the power of the other, and so on.
Note that although this is very powerful, it also breaks the model/view/controller
paradigm, as the model is now being manipulated directly from the view. Sometimes, this
is worth doing, but as a general rule of thumb, it is better to leave such calculations in the
bean.
Another advantage to the c:out tag is that it can display things other than beans. Every
JSP has available a number of implicit objects, that is, objects that the system provides
without the developer's needing to load or name them explicitly. One of these is the
pageContext object, which contains a great deal of information about the action
currently being performed, such as the name of the page being generated, the name of the
computer from which the request came, and so on. Listing 4.7 uses the pageContext
object to display some of the available information.

Listing 4.7 The request object

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

Your computer is called

 88

<c:out value="${pageContext.request.remoteHost}"/>

This page came from server

<c:out value="${pageContext.request.serverName}"/>

This page came from port

<c:out value="${pageContext.request.serverPort}"/>

This example illustrates a new kind of syntax: expressions with multiple dots. This will
make more sense following the discussion of compound data later in this chapter.
Another important implicit variable is param, and it holds all the values that have been
sent to a page by a form. This variable acts like a special bean in that it does not have a
predefined set of properties but instead has a property for every value in the form.[2]
Suppose, for example, that a form has an input like this:

[2] For readers familiar with Java, param is in instance of a class that implements the java.util.Map interface. The

expression language handles the dot operator following the name of a map by treating the identifier after the dot as a

key.

<input type="text" name="color">

The user's response could be displayed on a page using the following:
<c:out value="${param.color}"/>

This feature of the expression language provides a fix for a problem with the Java News
Today site. Recall that the page title appears in top.jsp, which is shared by every page,
but this title really should change to identify each page. This can be accomplished as
follows:
<title>

 Java News Today: <c:out value="${param.title}"/>

</title>

Here, the parameter title will not come from a form but instead can be passed in
through a variation of the jsp:include tag. For example, the index page will now
include the top portion of the page with
<jsp:include page="top.jsp">

 <jsp:param name="title" value="Welcome!"/>

</jsp:include>

 89

The availability of param also means that the bean isn't needed in Listing 4.4 at all! The
whole page can be reduced to
<awl:maybeShow show="${param.shouldShow}">

 The time is:

 <awl:date format="hh:mm:ss MM/dd/yy"/>

</awl:maybeShow>

Likewise, the calculator could do without its bean, reducing the page to
The sum is:

<c:out value="${param.value1 + param.value2}"/>

Errors to Watch For

Most of the comments about possible errors when using the jsp:getProperty
tag also apply to c:out and other tags that use expressions. In particular, trying
to reference a property that the bean does not possess will result in an error.
In addition, trying to reference a bean that does not exist, such as c:out
value="${someBean.someProperty}" if someBean has not been loaded, will
not result in an error but simply in nothing being displayed. This can result in
problems that may be difficult to find and fix, for example, if the name of a bean
is simply misspelled.

Because c:out acts like an enhanced version of jsp:getProperty, it is not surprising
that an equivalent of the jsp:setProperty tag is in the standard library. This tag, c:set,
looks like this:
<c:set

 target="bean"

 property="property name"

 value="property value"/>

This tag sets the property called property name in the bean identified as bean name to
value. Unlike the jsp:setProperty tag, the c:set tag can not set all the properties in a
bean at once by using the special property *. However, each of the parameters to c:set
may be a script, which allows properties to be set with dynamic values.

Errors to Watch For

When using the c:set tag, it is very important to mind the distinction between

 90

something like target="bean" and target="${bean}". The former is a name
that has no properties; the latter is a bean obtained from the name by the
expression language. This can be a natural source of confusion, as the
jsp:setProperty tag does use the name. Even if the reason is not completely
clear at this point, remember that the target should always take an expression,
not simply a name.

4.5 Formatting Output

Consider once again the calculator from Listing 4.6. If the user enters large numbers�say,

1264528 and 9273912�the sum will be 10538440. This is certainly the right answer, but

it is not in a particularly readable format. It would be much better if it could be displayed
as 10,538,440. The issue of formatting comes up frequently when designing Web pages,
as there are often particular rules about how numbers, currencies, and dates should be
displayed.
Another portion of the standard library provides tags for displaying formatted values.
This library can be imported by using
<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jstl/fmt" %>

Once loaded, a number of new tags are available, some of which work similarly to the
c:out tag but allow a format to be specified. For example, the c:out tag from Listing 4.6
could be replaced with
<fmt:formatNumber

 value="${calc.value1 + calc.value2}"

 pattern="###,###"/>

The pattern indicates that there should be a comma after every three digits. It would
also be legal to provide a decimal point, as in ###,###.##, which would indicate that a
comma should be placed every three digits, with two digits following the decimal point.
A number of examples have contained custom mechanisms for formatting dates. Now a
more general solution to this problem is available: the fmt:formatDate tag. This tag
works very much like fmt:formatNumber tag but expects its value to be a date. If the

 91

bean from Listing 3.1 were loaded with jsp:useBean, the date property could be
formatted with
<fmt:formatDate

 value="${bean1.date}"

 pattern="hh:mm:ss MM/dd/yy"/>

The valid expressions for pattern can be found in the documentation for the
java.text.SimpleDateFormat class, but note for the moment that any of the
expressions from Listing 3.2 would work.
The formatting tags can do a great deal more than has been shown here. Different
countries have different standard ways to express numbers and dates, and the format tags
can ensure that data is formatted in an appropriate way for each country, through a
mechanism called internationalization. The format tags can also be used to parse values,
which would allow the calculator to accept inputs with commas and decimal points.
These topics are beyond the scope of this book, but now that the basic functionality of
these tags is clear, interested readers can see the remaining details in section 9 of the
JavaServer Pages Standard Tag Library specification, which is available from
http://java.sun.com/products/jsp/.

4.6 Compound Data in the Expression Language

Up until now, all the bean properties have have been simple types: strings of text or
numbers. This feature of the examples that have appeared is not a fundamental restriction
on beans themselves. Beans can contain compound values as well.
Compound values, as the name implies, contain multiple pieces of data. If this sounds
familiar, it should; beans themselves hold multiple pieces of data. Indeed, beans can
contain other beans, which can contain yet other beans, and so on, indefinitely.
As an example of how this might be useful, consider how a bean would be used to model
a home entertainment system, which may contain many individual components, such as
an amplifier, CD player, cassette player, and radio tuner. The system as a whole may
have certain properties, such as which component is currently playing and the overall
color and size of the system. In addition, each individual component has its own set of
properties. The CD player has a property representing the name of the disc it currently
contains, the tuner has a property indicating the station it is currently tuned to, and so on.

 92

It would in principle be possible to give all the properties of the components to the
system as a whole, but this is bad design. It is much better to encapsulate logical units as
separate beans. This design allows more complex beans to be constructed incrementally
by using the individual building blocks, in the same way that using the jsp:include tag
allows complex pages to be built up from smaller ones.
Given the home entertainment system bean, there is no way in which the
jsp:getProperty tag could be used to determine the name of the CD in the CD player.
The whole CD player bean could be obtained with
<jsp:getProperty

 id="homeEntertainment"

 property="cdPlayer"/>

However, this will display the whole CD player bean. Beans as a whole have no standard
representation; this might display as something cryptic, such as
com.awl.ch04.jspbook.CdBean10b053, or it might display as a list of all the properties
of the bean or anything else that the bean programmer has chosen. In any case, it is
unlikely to display only the name of the current disc. What is needed is a way to traverse
a set of compound data. Fortunately, the expression language provides a mechanism to do
this.
As discussed previously, within the expression language, a single dot between two names
indicates that the name on the left should be a bean and the name on the right a property.
This extends in a natural way; if a property is itself a bean, it is legal to add another dot
followed by the name of a property within that bean, and so on. Getting the name of CD
from a CD player within a home entertainment system would therefore look something
like
${homeEntertainment.cdPlayer.currentDisk}

The meaning of the multiple dots in Listing 4.7 should make more sense now. An object
called pageContext holds information about the page currently being generated. Within
this object is another object, called request, which holds information pertaining to the
request being processed. Finally, the request object has such data as the name of the
local computer, the remote computer, and so on.

4.6.1 Repeating a Section of a Page

Another important kind of compound data is a collection of an arbitrary number of values.
A CD has a number of tracks, but as this number is different for different CDs, a CD bean

 93

cannot simply have a different property for each track. Similarly, a shopping cart bean
will contain a number of items, but this number will change as the bean is used.
Java has many ways to manage collections of varying size, but the simplest is called an
array. Arrays are lists of objects of the same type, such as arrays of strings, arrays of
numbers, and arrays of CDs. Within these arrays, items are referenced by a number called
the index, starting with 0.
The expression language makes it possible to pull a particular element out of such an
array by placing its index within brackets. Obtaining the first track of a CD could be done
with an expression like this:
${cd.tracks[0]}

Again, note how this logically follows from the way properties work: ${cd.tracks}
would return the entire array; following this with [0] pulls out a particular element from
that array.

Errors to Watch For

If a request is made for an index beyond the number of elements in the array, the
result will be empty.

It is unusual to need to access a particular element in an array; it is more common to need
to repeat some action for every element, regardless of how many there are. This process
is known as iteration, and it should come as no surprise that a tag in the standard library
handles it: jsp:forEach. Recall that Listing 3.13 obtained information about a CD from
a serialized bean. At that point, however, there was no way to list the tracks, because the
page could not know in advance how many there would be. Listing 4.8 uses the
c:forEach tag to solve this problem, and the resulting page is shown in Figure 4.2.

Figure 4.2. Iteration used to display every element in an array.

 94

Listing 4.8 The forEach tag

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<jsp:useBean

 id="album"

 beanName="tinderbox4"

 type="com.awl.jspbook.ch04.AlbumInfo"/>

<h1><c:out value="${album.name}"/></h1>

Artist: <jsp:getProperty name="album"

 property="artist"/><p>

Year: <c:out value="${album.year}"/></p>

Here are the tracks:

<c:forEach items="${album.tracks}" var="track">

 <c:out value="${track}"/>

</c:forEach>

 95

The c:forEach tag takes a number of parameters. The first is the items to iterate over,
which is specified by a script. The second is a name to use as a variable; within the body
of c:forEach, this variable will be set to each element in the array in turn. This variable
can be accessed by the expression language as a bean, which means, among other things,
that the c:out tag can be used to display it.

Errors to Watch For

If something other than an array is used as the items parameter, the c:forEach
tag will treat it as if it were an array with one element.

4.6.2 Optionally Including Sections of a Page

Iteration allows a page to do one thing many times. The other major type of control a
page may need is determining whether to do something at all. The custom
awl:maybeShow tag introduced at the beginning of this chapter handled a limited version
of that problem, but the standard tag library provides a number of much more general
mechanisms, called collectively the conditional tags. The most basic of these tags is
called c:if.
In its most common form, the c:if tag takes a single parameter, test, whose value will
be a script. This script should perform a logical check, such as comparing two values, and
facilities are provided to determine whether two values are equal, the first is less than the
second, the first is greater than the second, and a number of other possibilities. Listing 4.9
shows how the c:if tag can work with a bean to determine whether to show a block of
text.

Listing 4.9 The if tag

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<%@ taglib prefix="awl"

 uri="http://jspbook.awl.com/samples" %>

<jsp:useBean

 id="form"

 class="com.awl.jspbook.ch04.FormBean"/>

<jsp:setProperty name="form" property="*"/>

 96

<c:if test="${form.shouldShow == 'yes'}">

 The time is:

 <awl:date format="hh:mm:ss MM/dd/yy"/>

</c:if>

Note the expression in the script for the test parameter. Two equal signs, ==, are used to
check two values for equality. Here, the first value comes from a property and is obtained
with the normal dotted notation. The second value, yes, is a constant, or literal, which is
reflected by the single quotes around it in the script. If these quotes were not present, the
expression language would look for a bean called "yes"; as no such bean exists, the
result would be an error.
Listing 4.9 is similar to Listing 4.3; the major difference is that Listing 4.9 uses the
standard tag instead of the custom awl:maybeShow. The downside is that the c:if tag
cannot reverse a block of text; all it can do is decide whether to include its body content
in the final page.
This may seem like a shortcoming but in fact reflects a good design pattern. Note that
awl:maybeShow does two completely unrelated things: checks whether a value is yes, no,
or reverse and reverses a block of text. Rather than making one tag do two things, it is
better to have two different tags. According to the so-called UNIX philosophy of
software, each piece of code should do only one thing and do it well, and there should be
easy ways to knit these small pieces together. For tags, this means that each tag can be
used independently or combined with other tags. In this case, if an awl:reverse tag did
nothing but reverse its body content, it could be combined with the c:if tag to do the
same thing as Listing 4.3. This is shown in Listing 4.10.

Listing 4.10 Splitting tags

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<%@ taglib prefix="awl"

 uri="http://jspbook.awl.com/samples" %>

<jsp:useBean

 id="form"

 class="com.awl.jspbook.ch04.FormBean"/>

<jsp:setProperty name="form" property="*"/>

 97

<c:if test="${form.shouldShow == 'yes'}">

 The time is:

 <awl:date format="hh:mm:ss MM/dd/yy"/>

</c:if>

<c:if test="${form.shouldShow == 'reverse'}">

 <awl:reverse>

 The time is:

 <awl:date format="hh:mm:ss MM/dd/yy"/>

 </awl:reverse>

</c:if>

Note that two c:if tags are used here: one to check whether the value is yes and another
to check whether it is reverse. The body content of both of these tags is the same, which
is rather wasteful. It means that if the body ever needs to change, it will need to be
modified in two places in order to keep everything consistent. It would be better in this
case to put the body in a separate file and then have both of the if tags include that file
with a jsp:include tag. Now that the functionality of awl:maybeShow has been divided
into two pieces, the c:if tag can be used for many other things, and the awl:reverse tag
can be used to reverse unconditionally a block of text, should such a thing ever be useful.
Listing 4.10 imports two tag libraries: the standard one, which is installed as c and
provides the c:if tag, and the custom one installed as awl, which provides the
awl:reverse tag. This is perfectly valid; often a page will need many different tags from
different libraries, and it will then need to import all of them. The only catch is that each
tag library must be given a different prefix.

4.7 Browser Detection

Web programmers face many difficult decisions, not the least of which is how to deal
with the fairly horrible state of modern browsers. A popular Web site is likely to receive
requests from versions of Internet Explorer 3 through 6, Mozilla, Netscape 4.7, Opera,
various AOL browsers, and numerous custom browsers now available in consumer
devices, such as phones and PDAs (personal digital assistants). Each of these is likely to
render HTML slightly differently, support different media types, and handle JavaScript
differently, if at all.

 98

One way of dealing with this variability is to use the "lowest common denominator," that
is, only those features that are supported and work the same in every browser. This makes
things easier for the Web developer but means that the user will be getting a site that
looks like something from the early 1990s, which may disappoint many users.

Alternatively, Web developers may design a site for one browser�perhaps Mozilla 1.0�a

nd put up a note encouraging other users to switch to this browser. This is likely to
infuriate many users who either don't want to or can't change browsers simply to get to
one site.
Finally, developers can create parallel versions of all the browser-specific HTML and
JavaScript and so on and send out the appropriate version, based on which browser is
being used. The browser makes this possible by identifying itself with every request, and
JSPs make this possible through the conditional tags. A skeleton of code that
accomplishes this is shown in Listing 4.11.

Listing 4.11 Browser detection

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<jsp:useBean

 id="browser"

 class="com.awl.jspbook.ch04.BrowserBean"/>

<c:set

 target="${browser}"

 property="request"

 value="${pageContext.request}"/>

You are using a browser that identifies itself as

<c:out value="${browser.fullName}"/><p>

<c:if test="${browser.type == 'Gecko'}">

... include Mozilla code here ...

</c:if>

<c:if test="${browser.type == 'MSIE'}">

 99

... include IE code here ...

</c:if>

This example uses BrowserBean, a utility bean that extracts browser information from
the request. In order to obtain this information, BrowserBean must have access to the
request object. This object is obtained from the pageContext, as was done in Listing
4.7, and passed with a c:set tag to the bean.
A bean such as BrowserBean is needed for two reasons: first, because the browser name
is not available as a simple property, such as the ones shown in Listing 4.7; second,
because the full name of the browser is likely to be something unwieldy, such as
Mozilla/5.0 (X11; U; FreeBSD i386; en-US; rv:1.0rc3) Gecko/20020607, which contains
information about the specific revision and operating system on which the browser is
running. This is generally more information than needed to select the appropriate
browser-specific code for a page. This second problem is solved by having the bean
recognize major browser types, and it is this type that is used by the c:if tags.

4.8 Combining Tags

As mentioned previously, the bodies of JSP tags can contain anything, including other
JSP tags. An example is the c:out tag within the c:forEach tag in Listing 4.8. To
demonstrate this further, the c:if and c:forEach tags work together in the following
example.
If given an empty array, a c:forEach tag will not render its body content at all. This is
fine but can lead to some odd-looking pages. In Listing 4.8, if the CD is empty, the page
will display "Here are the tracks" and then stop. This is technically correct but to the user
may look as though the page stopped generating halfway through. It would be better to
inform the user that the CD is empty rather than to display a list with no elements. This
can be accomplished by putting the c:forEach tag inside a c:if tag, as shown in Listing
4.12.

Listing 4.12 Tags working together

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<jsp:useBean id="album" beanName="tinderbox4"

 type="com.awl.jspbook.ch04.AlbumInfo"/>

 100

<h1><jsp:getProperty name="album" property="name"/></h1>

Artist: <jsp:getProperty name="album"

 property="artist"/><p>

Year: <jsp:getProperty name="album" property="year"/></p>

<c:if test="${empty album.tracks}">

There are no tracks! What a boring CD.

</c:if>

<c:if test="${!(empty album.tracks)}">

 Here are the tracks:

 <c:forEach items="${album.tracks}" var="track">

 <c:out value="${track}"/>

 </c:forEach>

</c:if>

Conceptually, the only new thing about this example is the check that is done in the c:if
tag. The empty in the test checks whether the named property exists,[3] and if it does exist
and is an array, whether it has any elements. The exclamation point in the test should be
read as "not." It means that if the following test would be true, it returns false, and vice
versa.

[3] Technically, it tests whether the value equals null, as will be discussed in Chapter 9.

4.9 Selecting among Multiple Choices

Once again, the preceding example had to use two c:if tags, although the bodies are
different in this case. However, this is still somewhat clumsy, as the same check is being
performed twice: once to see whether it is true and once to see whether the reverse is true.
This double check is needed because the c:if tag is capable of deciding only between

 101

two alternatives: to include its body or not to include it. Another set of tags allows
multiway branching, or choosing from among several mutually exclusive possibilities.
Unlike the other tags seen so far, three tags work together to obtain the desired result. The
outermost tag, c:choose, has no parameters; it merely serves as a container for a
collection of two other tags: c:when and c:otherwise. Each individual c:when tag acts a
lot like a c:if tag. Both tags take a parameter called test, which should be a script, and
render their body content if the condition in the script is true. The difference is that
multiple c:if tags will each be checked in turn, whereas a c:choose tag will stop after
finding the first c:when tag with a test that is true.
In other words, consider a set of possible values for a bean property, such as the colors
red, green, and blue. The following snippet of code would check each of these
possibilities regardless of the value:
<c:if test="${bean.color == 'red'}">...</c:if>

<c:if test="${bean.color == 'green'}">...</c:if>

<c:if test="${bean.color == 'blue'}">...</c:if>

The following snippet will check whether the color is red; if so, it will stop and will not
then have to check whether it is green and then blue:
<c:choose>

 <c:when test="${bean.color == 'red'}">...</c:when>

 <c:when test="${bean.color == 'green'}">...</c:when>

 <c:when test="${bean.color == 'blue'}">...</c:when>

</c:choose>

Clearly, the second option is more efficient. In addition, using the c:choose tag groups
related code in one place and so makes JSPs easier to read and understand.
The c:choose tag works with another tag: c:otherwise. This tag also has no parameters;
its body will be evaluated if none of the c:when tags has a true condition.

It is now clear how it would be possible to avoid doing the check twice in Listing 4.11�b

y using one c:when and a c:otherwise�rather than by using two c:if tags. This is

shown in Listing 4.13.

Listing 4.13 The choose tag

<c:choose>

 <c:when test="${empty album.tracks}">

 102

 There are no tracks! What a boring CD.

 </c:when>

 <c:otherwise>

 Here are the tracks:

 <c:forEach items="${album.tracks}" var="track">

 <c:out value="${track}"/>

 </c:forEach>

 </c:otherwise>

</c:choose>

This code is a little more verbose than Listing 4.12 but has the advantage of avoiding one
redundant test. Using the c:choose tag also makes it clear that the conditions are
mutually exclusive, and hence only one of the bodies will ever be rendered.
Chapter 2 briefly mentions the jsp:forward tag, which sends the user from one page to
another. This tag can be combined with the c:choose tag to provide a type of control
called dispatching, whereby one page determines where the appropriate content lives and
sends the user to that page. This is illustrated in Listing 4.14.

Listing 4.14 Using the choose tag as a dispatcher

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<c:choose>

 <c:when test="${param.whichPage == 'red'}">

 <jsp:forward page="red.jsp"/>

 </c:when>

 <c:when test="${param.whichPage == 'green'}">

 <jsp:forward page="blue.jsp"/>

 </c:when>

 <c:when test="${param.whichPage == 'blue'}">

 <jsp:forward page="blue.jsp"/>

 103

 </c:when>

 <c:otherwise>

 <jsp:forward page="select_page.jsp"/>

 </c:otherwise>

</c:choose>

This page looks for a form parameter, whichPage, which should be red, green, or blue,
and, based on this value, sends the user to one of three pages. If no value has been
provided, the otherwise tag forces the user to "select_page.jsp", which contains the
form to be filled out.

4.10 Summary and Conclusions

Now we're cooking! This chapter introduced the concept of custom tags and the standard
tag library now part of the JSP specification. These tags give page authors full control
over what the user ends up seeing, by providing the means to show arbitrary values,
repeat a section of a page as many times as needed, conditionally remove a section of
page, or choose from many possible sections. In the next chapter, we'll see how these tags,
together with beans, allow Java News Today to build its site.

4.11 Tags Learned in this Chapter

c:forEach Repeats a section of the page for every item in an array
Parameters:
 items: An expression specifying the array to use, most likely a bean property
 var: The name of the variable with which each element in the array will be
 referred
Body:Arbitrary JSP code

c:out Displays a value
Parameters:
 value: An expression to be evaluated and displayed

 104

Body: Arbitrary JSP code; the body content will be displayed if value is null

c:if Conditionally include a portion of the page
Parameters:
 test: An expression that should be a logical test of a property
 var: If present, names a variable where the result of the expression will be
 stored
Body: Arbitrary JSP code

c:choose Includes one of several portions of a page
Parameters: None
Body: Arbitrary number of c:when tags and, optionally, one c:otherwise tag

c:when One possibility for a c:choose tag
Parameters:
 test: An expression that should be a logical test of a property
Body: Arbitrary JSP code

c:otherwise The catch-all possibility for a c:choose tag. If none of the expressions
in the c:when tags evaluates to true, the body of the c:otherwise will be
included.
Parameters: None
Body: Arbitrary JSP code

c:set Set a property in a bean
Parameters:
 target: The name of a bean
 property: The property within the bean to set
 value: The value to assign; may be a script
Body: None

fmt:formatNumber Format a number for output
Parameters:
 value: The value to be formatted; may be a script
 pattern: A pattern specifying how the number should be formatted
Body: None

 105

fmt:formatDate Format a date and/or time for output
Parameters:
 value: The value to be formatted; may be a script
 pattern: A pattern specifying how the date should be formatted
Body: None

 106

Chapter 5. Java News Today: Part I

Armed with the power of beans, the expression language, and the standard tag library,
Java News Today is at last ready to start putting its site together in earnest. In order to do
so, JNT will need to decide what functionality the site will offer, design the beans that
will represent the entities they will be dealing with, and build pages to provide that
functionality. This chapter looks at each of these steps.

5.1 The Beans

Generally the first step of any large project, data modeling, consists of deciding what data
the system will need to maintain, how this data will be represented, and how it
interrelates. Traditionally, such modeling takes place in the context of a database,
discussed in Chapter 6. For current purposes, however, it is reasonable to model
everything in terms of beans. As there is not yet anywhere to store all the data, the
examples in this chapter use beans in which the data has been hard-coded, although this is
never a good idea in real-world projects. Even when prototyping a system, it is better to
use a small, simple database. However, this little cheat will not significantly change the
way the pages work, so it will suffice for now.
Java News Today has already identified a few beans it will need. In Chapter 3, JNT
developed the QuizBean, which holds the question, options, and correct answer for the
daily quiz, and created a UserInfoBean to hold users' preferences for colors, as well as a
name. At this time, JNT is ready to consider allowing users to register on the site, in order
to store their preferences permanently. This will necessitate adding some logic to the
UserInfoBean in order to handle logging users on the system. The fields added will be
username, password, and isLoggedIn, a flag that will be true if the user is currently
logged in and false otherwise.
In addition to users and quizzes, the other major entities behind the JNT site are articles.
An ArticleBean will hold the text of the story, a headline, and a date and time of
publication. Each ArticleBean will also have a unique numeric identifier to identify and
load that story.
As with a physical newspaper, articles will be grouped into major sections covering broad
categories, such as J2EE, the Java community, related technologies, and so on. Each

 107

section will have a name and a description and will also keep track of all the articles it
contains. This containment will be managed by creating a SectionBean and giving each
instance of SectionBean an array of ArticleBean instances. This should immediately
suggest the use of the jsp:forEach tag to display all the stories in a section, and indeed
such a page will be on the site. This illustrates how the data-modeling phase of a project
can inspire and affect the page-designing phase.
Similarly, sections will be grouped into an edition. At the moment, an edition will have
only an array of sections; later, its role will be expanded to manage many of the
personalization options Java News Today will offer.
Finally, in order to make this a community site, the staff at Java News Today would like
to allow users to add comments to stories. Some sites, notably http://www.slashdot.org,
provide very sophisticated commenting systems that can include threaded discussions,
moderation of comments, and a whole host of other features. For the moment, JNT will
allow only a simple "flat" commenting system, whereby comments simply appear in the
reverse order they were added. This suggests the need for a CommentBean and an array of
such beans held by each ArticleBean. Figure 5.1 shows a sample of beans as they might
exist in memory and their relationships to one another.

Figure 5.1. The JNT beans.

 108

5.2 The Header

The header is the site's simplest component, as its only job is to display a banner with the
title of the page, along with the user's name as added in Chapter 3. In order to clean it up
a little, the header will be modified to show only the user's name if the user has logged in.
The resulting page is shown in Listing 5.1.

Listing 5.1 The header

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

 109

<jsp:useBean id="user5"

 class="com.awl.jspbook.ch05.UserInfoBean"

 scope="session"/>

<center>

 <h2>

 Java News Today: <c:out value="${param.title}"/>

 </h2>

</center>

<c:if test="${user5.isLoggedIn}">

 <div class="left">

 Hello <c:out value="${user5.name}"/>!

 </div>

</c:if>

This is about as simple a page as one could hope for. It loads a bean, checks a property
with the c:if tag, and displays a value with the c:out tag.
The bean is loaded from the session scope because the user information should remain
active as long as the user is active on the site. If this bean were in the request scope, the

user's preferences would need to be reloaded�or worse, would be lost completely�on

every new page. If the bean were in the application scope, every user would share the
same data, which would not allow each user to have different options. Thus, session
scope is definitely the right place for this bean.
Note that the test simply checks the value of a property. The test does not need to check
whether the ${user.5isLoggedIn == true}isLoggedIn property itself returns true or
false directly.

5.3 The Left-Hand Navigation

The left side of the page has thus far contained only the daily quiz, which was developed
in Listing 3.13, and a link to the customization page. This will now be enhanced by the
addition of a login box from which the user can log in. This will also be a simple form,

 110

but in the interest of encapsulation, it will be placed in its own file and included with a
jsp:include. Listing 5.2 shows the new login form.

Listing 5.2 The login form

<form action="login_result.jsp" method="post">

Username:

<input type="text" name="username" size="8">

Password:

<input type="text" name="password" size="8">

<input type="submit" name="Login" value="Login">

</form>

This file contains no beans, scripts, or special tags, which should come as no surprise.
There have already been many examples of forms that provide values to beans, and in all
these cases, the forms themselves need not know anything about the beans, as all the
action happens on the receiving page, where the form values are loaded into a bean with
the jsp:setProperty tag. The only requirement for this to work is that the bean's
properties must be called username and password. Because these names were chosen in
the data-modeling phase, both the author of this form and the author of the
UserInfoBean will know to use those names.
The implementation of the UserInfoBean used in this chapter knows about one user
whose username and password are both "test", so those are the values to enter into the
login form when exploring the examples on the CD-ROM.
The other necessary element of the left-hand navigation is the list of sections available in
the current edition. The designer for the site would like an asterisk next to the current
section so that the user will always know where in the site he or she currently is. The
section list will also be placed in a separate file for easy manipulation; this file is shown
in Listing 5.3.

Listing 5.3 The list of sections

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<jsp:useBean

 id="edition"

 beanName="jnt"

 111

 type="com.awl.jspbook.ch05.EditionBean"/>

<jsp:useBean

 id="currentSection"

 class="com.awl.jspbook.ch05.SectionBean"/>

<jsp:setProperty

 name="currentSection"

 property="sectionId"/>

<c:forEach items="${edition.sections}" var="section">

 <c:if

 test="${currentSection.sectionId == section.sectionId}">

 *

 </c:if>

 <a href="<c:url value="section.jsp">

 <c:param name="sectionId" value="${section.sectionId}"/>

 </c:url>"><c:out value="${section.name}"/>

</c:forEach>

This example is somewhat more complicated, so let's go through it line by line. The first
line loads a tag library, and the next two lines load beans. The EditionBean will hold the
list of sections, as decided in the data-modeling phase. This bean will live in the session
scope for the same reasons that the UserInfoBean does.
The SectionBean will hold the currently selected section, information that will be
needed in order to put the asterisk in the right place in the list. In order to know what the
current section is, this bean will need to be told, which is done by setting the sectionId
property in the jsp:setProperty tag on the following line.
The next line starts an iteration with the standard c:forEach tag. Here, the items to
iterate are the sections from the edition; the iteration variable is called section. Note that
different names are used for the bean and the iteration variable in order to keep
everything clear.
Next, a check is performed to determine whether to display the asterisk. This simple test
for equality is handled by the c:if tag.
Now things get exciting! Displaying the name of the section would be easy enough using
the c:out tag, as can be seen just before the closing c:forEach tag. However, this name

 112

needs to be turned into a link so that the user can select a section by clicking the name.
This link will need to look something like the following:
<c:show value="${section.name}"/>

It is now necessary to determine what value should fill in the mystery spot in href. A
page called section.jsp will enable the user to see all the stories in a section, so that page
should be the destination. The only remaining question is how to pass along the
information about which section was selected. If the section were selected via a menu or
drop-down in a form, the sectionId would be passed along as a form variable. As it
turns out, attaching a name and a value to a URL behaves exactly the same as using a
form. In particular, the jsp:setProperty tag can load a bean with values passed in such
a URL. Thus, the URL should look like this:
section.jsp?sectionId=<c:show

 value="${section.sectionId}"/>

This should explain how the jsp:getProperty tag at the top of this file will work.
Clicking one of the links will go to the section page, passing along sectionId= with the
section ID that was selected. The section page will include the section list page; when the
jsp:setProperty tag is encountered, the section list page will grab the value from the
URL. This may seem slightly weird, as this page is therefore sort of eating its own output.
It may indeed be weird, but it is also a very common technique in Web development and
is worth getting accustomed to it.
Although specifying the URL would work in most cases, a better approach uses a new tag
from the standard library. The c:url tag builds a URL using the value parameter as the
base page and appending the names and values from any c:param tags within the body.
Using the c:url tag instead of manually constructing a URL has a number of advantages.
One of the most important advantages is that the c:url tag will ensure that the resulting
URL is valid. Certain characters, such as spaces and the equal sign, are not valid in
names or values within URLs. The c:url tag will translate such characters into a legal
representation automatically.
Now that the pieces are in place, the left-hand navigation bar itself is a straightforward
enhancement of previous versions and is shown in Listing 5.4.

Listing 5.4 The left-hand navigation bar

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

 113

<jsp:useBean

 id="user5"

 scope="session"

 class="com.awl.jspbook.ch05.UserInfoBean"/>

<c:if test="${!user5.isLoggedIn}">

 <div class="bordered">

 <jsp:include page="login.jsp" flush="true"/>

 </div>

</c:if>

<div class="bordered">

<jsp:include page="section_list.jsp" flush="true"/>

</div>

<div class="bordered">

<jsp:include page="quiz.jsp"/>

</div>

<c:if test="${user5.isLoggedIn}">

 <div class="bordered">

 Customize JNT

 </div>

</c:if>

The page imports the standard tag library and loads the UserInfoBean. This bean is used
to hide the login form if the user is already logged in and, if the user is logged in, to
display the customization link.
It is somewhat a matter of personal preference whether the check for the login form
should be done here or in login.jsp. The advantage to putting it in login.jsp is that all the
login-related logic is in one file. However, doing so would mean that there would be no
way to override the decision not to display the login form.
In general, this sort of decision should he handled by the controller layer instead of the
view. This issue will be revisited in Chapter 12 when controllers are discussed in more
detail. The new home page with all the new navigation elements is shown in Figure 5.2.

Figure 5.2. The new JNT home page.

 114

5.4 The Login Page

Now that a form has been provided so users can log themselves in on the system, there
needs to be a page that will perform the necessary actions. The page that does this is
shown in Listing 5.5.

Listing 5.5 The login handler

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<jsp:useBean

 id="user5"

 scope="session"

 class="com.awl.jspbook.ch05.UserInfoBean"/>

<jsp:setProperty name="user5" property="*"/>

<jsp:setProperty

 name="user5"

 115

 property="login"

 value="true"/>

<jsp:include page="top.jsp">

 <jsp:param name="title" value="Login"/>

</jsp:include>

<c:choose>

 <c:when test="${user5.isLoggedIn}">

 You have sucessfully logged into Java News Today!<p>

 Click here to proceed to

 your custom edition.

 </c:when>

 <c:otherwise>

 We're sorry, we were unable to log you in. Perhaps you

 mistyped your username or password; use the form on

 the left to try again.

 </c:otherwise>

</c:choose>

<jsp:include page="bottom.jsp"/>

This page begins with the usual things, including loading the UserInfoBean. The bean's
properties are then set: the username and password from the login form in Listing 5.2.
Part of the UserInfoBean's job as the model of users is to provide a mechanism that logs
a user in on the system, given the username and password. This mechanism is triggered
by setting the login property of the bean, which will cause the bean to check these
values against a list of all users in the system; if a match is found, the isLoggedIn
property will be set to true.
This setting of properties has to be done before the page top is included. If it were done
afterward, the user's isLoggedIn property would still be false during processing of the
header and navigation, and consequently the name would not be shown and the login
form would.
The rest of the page is pretty anticlimactic: another c:choose tag used to determine
whether the login succeeded and to display an appropriate message in either case.

 116

5.5 The Quiz Result Page

Chapter 3 introduced the daily quiz that Java News Today will use to liven up its site.
The quiz consists of a serialized bean that holds the questions and correct answer, along
with a form from which the user can guess, as shown in Listing 3.13. At that point, there
was no way to check whether the user was correct, but that's easily remedied now that we
have the standard tag library at our disposal. The quiz result page, shown in Listing 5.6, it
is very straightforward.

Listing 5.6 The quiz result page

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<jsp:useBean

 id="quiz"

 beanName="todaysQuiz3"

 type="com.awl.jspbook.ch03.QuizBean"/>

<jsp:setProperty name="quiz" property="*"/>

<jsp:include page="top.jsp" flush="true">

 <jsp:param name="title" value="Quiz result"/>

</jsp:include>

<c:choose>

 <c:when test="${quiz.userGuess == quiz.correctAnswer}">

 That's right!<p>

 </c:when>

 <c:otherwise>

 Sorry, that's incorrect; the right answer is

 <c:out value="${quiz.correctAnswer}"/><p>

 </c:otherwise>

</c:choose>

 117

<jsp:include page="bottom.jsp" flush="true"/>

This is another example of setting bean properties from a form and then checking a
condition with a c:choose tag.

5.6 The Section Page

Listing 5.3 showed how the section page will be called from the list of available sections
and how this page will be passed a sectionId as if a form had sent it. This means that it
will be possible to use a bean and a jsp:setProperty to tell that bean which section was
selected, just as was done in the section list to place an asterisk in front of the current
section.
If the section bean is designed to load up all the stories in a section when the sectionId
property is set, all that is necessary to build the section page is to iterate the available
articles with a c:forEach tag. That is exactly what Listing 5.7 does.

Listing 5.7 The section page

<jsp:useBean

 id="currentSection"

 class="com.awl.jspbook.ch05.SectionBean"/>

<jsp:setProperty

 name="currentSection"

 property="sectionId"/>

<dl>

 <c:forEach items="${currentSection.articles}"

 var="article">

 <dt><a href="<c:url value="article.jsp">

 <c:param name="articleId"

 value="${article.articleId}"/>

 </c:url>"><c:out value="${article.headline}"/>

 <dd><c:out value="${article.summary}"/>

 </c:forEach>

</dl>

 118

If this looks very similar to the section list from Listing 5.3, it should! They both do
essentially the same thing; the only significant difference is that the items in this example
are in a definition list instead of an unordered list. In particular, the c:url tag is used in
both. Figure 5.3 shows how the section page looks in a browser.

Figure 5.3. The JNT section page.

5.7 The Article Page

The article page consists of two pieces: the contents of the article and the comment
region, which allows users to comment on stories and read others' comments. The first
portion is even simpler than the section page, as it need only display the contents of a few
properties from the ArticleBean, as shown in Listing 5.8.

Listing 5.8 The article page

<jsp:useBean

 id="article"

 class="com.awl.jspbook.ch05.ArticleBean"/>

 119

<jsp:useBean

 id="user5"

 scope="session"

 class="com.awl.jspbook.ch05.UserInfoBean"/>

<jsp:setProperty name="article" property="articleId"/>

<h2><c:out value="${article.headline}"/></h2>

<i>Posted by <c:out value="${article.author}"/>

at

<fmt:formatDate

 value="${article.time}"

 pattern="MM/dd/yy hh:mm"/>

</i><p>

<c:out value="${article.contents}"/>

Note the use of the fmt:formatDate tag from the previous chapter to format the date.
The comment portion appears below the article contents and shows the list of available
comments, along with a form to add an additional one, as shown in Listing 5.9.

Listing 5.9 The comment section

<hr width="80%">

<h2>Comments</h2>

<c:forEach items="${article.comments}" var="comment">

 Posted by <c:out value="${comment.author}"/>

 at <fmt:formatDate

 value="${comment.time}"

 pattern="MM/dd/yy hh:mm"/>

 <blockquote>

 <c:out value="${comment.text}"/>

 </blockquote><p>

</c:forEach>

<hr width="80%">

 120

<c:if test="${user5.isLoggedIn}">

 <h2>Comment on this article</h2>

 <form action="comment_result.jsp" method="post">

 <input

 type="hidden"

 name="author"

 value="<c:out value="${user5.name}"/>">

 <input type="hidden"

 name="articleId"

 value="<c:out value="${article.articleId}"/>">

 <textarea name="text" rows="10" cols="30">

 </textarea>

 <input type="submit" name="Submit" value="submit">

 </form>

</c:if>

Anyone may read existing comments, so the current set is displayed with a standard
c:forEach tag. Java News Today has decided that only logged-in users may add
comments. This encourages users to sign up with the site and makes it easier to ban users
who abuse the system. Consequently, the input form is wrapped in a c:if tag. The
browser view of this page for a user who has logged in is shown in Figure 5.4. Note that
this page recognizes a logged-in user in three ways: The login form is gone, the user's
name appears in the header, and the comment section is active.

Figure 5.4. The JNT article page.

 121

One new feature to the form itself is that the name of the user is passed in a hidden
variable, a common trick for transmitting data from one page to another. Although it
would certainly have been possible for the receiving page to set manually the user's name
in the CommentBean from the UserInfoBean, providing that information through the
form allows the receiving page simply to do one jsp: setProperty instead of having to
get properties from multiple places.
The comment result page is much like other pages that have already been considered. The
heart of this page will simply set the values from the form into the bean in the standard
way:
<jsp:setProperty name="comment" property="*"/>

The CommentBean is designed so that once all the fields have been set, the comment is
correctly associated with an ArticleBean. Once again, putting the complex logic in the
model has made it very easy to create the view.

5.8 The Remaining Pages

That pretty much wraps up the set of pages available at Java News Today, at least for
now. Two other pages were not mentioned because they do not include anything new, but
for the sake of completeness, they will be discussed briefly. All pages are available on the
companion CD-ROM.

 122

The front page, index.jsp, shows a list of the ten most recent stories. This looks exactly
like the section page except that the list comes from edition. recentArticles instead
of currentSection.articles. Finally, a page is available for the user to change
preferences, which was already covered in Listings 3.16 and 3.17.

5.9 Summary and Conclusions

This chapter conveyed how easy it is to put together a site using beans and the standard
tag library. Although Java News Today is still quite simple in both design and
functionality, the principles used in this example are universal and will scale well in any
site.
Although the JNT site itself is fairly dynamic, the data behind it is not. There is no way to
add new stories, user preferences will be lost when the session expires, and comments
will be lost if the system is ever shut down. The solution to all these problems is to have
the beans communicate with a database, but before seeing how this is done, it will be
necessary to discuss databases in general. This is the topic of the next chapter.

5.10 Tags Learned in this Chapter

c:param Passes a parameter to a page or URL
Parameters:
 name: The name of the parameter
 value: The value of the parameter; may be a script
Body: None

c:url Construct a URL suitable for use in an href
Parameters:
 value: The base page of the URL
Body: c:param tags

 123

Chapter 6. Databases

In one sense, all Web sites are about information, or data. The stories on a news site are
data, as are the items in a catalog. A great deal of data exists behind the scenes, such as
information about users or the types of data they are interested in.
The problem of organizing large amounts of data is not a new one; many companies had
to organize inventory or customer data long before the Web. This need to organize data
gave rise to a kind of application called a database, a repository of structured information
optimized to store and retrieve data quickly. Databases also allow multiple users to access
or even change the same data simultaneously without corrupting it.
This chapter presents a brief overview of database technology, including standard tag
library built-in features that greatly simplify working with databases. This chapter also
discusses low-level techniques that allow JavaServer Pages to access databases and then
discusses a bean-based approach that is both sophisticated and simple to use.

6.1 A Quick Introduction to Databases

Because any large collection of information is in a sense a database, there are many kinds
of databases. The most commonly used kinds of commercial databases are called
relational databases.
Relational databases store information in conceptually simple structures called tables. A
table in a database is something like an HTML table or, for that matter, a table in book.
For example, Table 6.1 contains some information about a CD collection.

Table 6.1. A Table with CD Information

Artist Album Name

Black Tape for a Blue Girl The Scavenger Bride

Mors Syphylitica Feather and Fate

Voltaire Boo Hoo

 124

The data in Table 6.1 is organized into rows, each of which describes a single CD. Each
row has columns, or fields, each containing a simple attribute of the CD. Each column
also has a name, specified in the table header.
A table in a database also has rows containing named columns; the only additional
feature is that each column also has a specified type. Most databases handle types that
will be familiar to Java developers: integers, characters, strings, dates, floats, and so on.
Some fields will be allowed to have a special value, NULL, which means "no data is
available." The empty test as used in Listing 4.12 can be used to check for this special
value.
Next, consider the problem of adding track data to the CD table. One possibility would be
simply to add fields, such as track title and track length, to Table 6.1, but doing so would
mean that every track entry would need to contain the album and artist name as well,
which would waste space on the page or on disc, in the case of a real database. It would
be much more efficient to use two tables: one for tracks and one for CDs. The two can be
linked by giving each CD a unique integer ID and referencing that ID in the track table.
This would lead to Tables 6.2 and 6.3.
Using integers to link up tables is a very common technique, especially when mapping
one-to-many relationships, whereby a row in one table may connect to many rows of
another table. Integers are small and so do not take up much space in the database, and
because integers are easy to sort and manipulate, looking up information based on an ID
is typically very fast. Similarly, because artists typically have many albums, another
possible efficiency is to be gained by moving artists into their own tables and using an
artist ID to map them to their albums.
Many, many databases are available. Many business sites use products from Oracle or
Microsoft, but a number of high-quality, free databases also are available. These
databases are perfectly suitable for small to midsized sites or for development and are
very attractive to people who cannot afford a large commercial database. MySQL and
PostgreSQL are prime examples of this latter type of database. MySQL is available from
http://www.mysql.org, and PostgreSQL is available from http://www.postgresql.org.

Table 6.2. The CD Table with a Unique ID

Artist Album Name Album ID

Black Tape for a Blue Girl The Scavenger Bride 1

Mors Syphylitica Feather and Fate 2

 125

Table 6.2. The CD Table with a Unique ID

Artist Album Name Album ID

Voltaire Boo Hoo 3

Table 6.3. The Track Table

Album ID Track Name

1 The Scavenger Bride

1 Kinski

2 The Hues of Longing

2 Naturally Cruel

3 Future Ex-Girlfriend

3 I'm Sorry

All the examples in this book use a database called hsqldb, a small, fast, free relational
database implemented in 100% Pure Java. In addition to its other features, hsqldb can run
on any platform and is completely self-contained, so readers running the examples in this
book will not need to worry about setting up or configuring a database. Hsqldb is
included on the companion CD-ROM and is also available from
http://hsqldb.sourceforge.net/.

6.2 A Language for Databases

For humans and databases to work together, they must speak a common language.
Although in principle, every database manufacturer could define its own such language,
doing so would cause problems for both users and database vendors. To avoid these
problems, a standard called Structured Query Language (SQL, pronounced "sequel") that
all database vendors support, although frequently with some enhancements specific to
their products, has been defined.
Most databases provide a utility program that allows users to enter SQL commands
interactively and get results back. That program for hsqldb's can be accessed by running
the following:

 126

java -cp hsqldb.jar org.hsqldb.util.DatabaseManager

One such command might be instructions to create a new table by specifying the names
and types. The SQL commands to create the CD and track tables from Tables 6.1 and 6.2
are shown in Listing 6.1.

Listing 6.1 SQL commands to create tables

CREATE TABLE artist (

 artist_id int,

 name char(40)

);

CREATE TABLE cd (

 album_id int,

 artist_id int,

 name char(40)

);

CREATE TABLE track (

 album_id int,

 name char(60)

);

These commands define the columns in each table by giving each column a name and a
type. The semicolons here indicate the end of each SQL command. This is a common
convention but is not universal. Some SQL interpreters require the word go after each
command.
Once the tables have been created, data can be stored in them with SQL's insert
command, as shown in Listing 6.2.

Listing 6.2 SQL commands to put data into tables

INSERT INTO artist VALUES(1,'Mors Syphilitica');

INSERT INTO cd VALUES(1,1,'Primrose');

INSERT INTO cd VALUES(2,1,'Feather and Fate');

INSERT INTO track VALUES(1,'Ungrateful Girl');

 127

INSERT INTO track VALUES(1,'Remidy');

INSERT INTO track VALUES(2,'The Hues of Longing');

INSERT INTO track VALUES(2,'Naturally Cruel');

These commands build rows in the database by specifying the value for each column in
that row. Astute readers will note that the name of the second track is misspelled;
fortunately, there is a way to change data once it has been entered, and this will be shown
shortly.
Of course, data is useful only if it can be retrieved, and the SQL command that does this
is called select. It has a number of variations, but the simplest lists all data from a table.
The following command would list all tracks for all albums:
SELECT * FROM track;

The asterisk indicates that all fields should be retrieved. If only the track name and
duration were desired, the asterisk would be replaced by name,length.
Generally, pulling all the rows from a table is not that interesting. In this example, it
would have pulled the tracks from both albums, which is unlikely to be of any particular
interest. A SELECT command can be modified by a where clause, which imposes one or
more conditions that must be true in order for the row to be retrieved. To see only the
names of the tracks on "Primrose," the SQL command would look like this:
SELECT name from track WHERE album_id = 1;

This command will obtain the desired data, but in order to construct this query, it is
necessary to know the album ID. This ID could be found by looking at the CD table,
using the following query:
SELECT album_id from cd WHERE name='Primrose';

But this is cumbersome. Fortunately, it is unnecessary, as the two queries can be
combined into a single command by selecting from the two tables simultaneously and
imposing a condition that connects them. This kind of query is called a join because it
joins two or more tables together. Here is the SQL to accomplish this:
SELECT track.name FROM cd, track

WHERE cd.album_id = track.album_id

AND cd.name = 'Primrose';

The field to select is specified as the table name, a dot, and then the column name. This is
necessary because both the CD and track tables have a field called name, so it is
necessary to clarify which table is intended. Without this clarification, the database would
respond with an error about a "field ambiguity." The SELECT is done on both the CD and
track tables, and they are joined by the condition that the album_id fields must match.

 128

An additional requirement is placed on the album name, so that only the tracks from that
album will be returned.
The SELECT command has many more options. But this is enough to follow the examples
throughout the book.
Other SQL commands delete and update rows. The DELETE command also takes a where
clause and will delete all rows that satisfy the condition in the clause. The UPDATE
command likewise takes a where clause, as well as a set of new values. For example, to
change one of the track names, a SQL statement like this could be used:
UPDATE track

SET name='Remedy'

WHERE name='Remidy';

This will find all rows in which the title track is named "Remidy" and will replace the
name with the correct spelling.

6.3 Using SQL Directly from JSPs

The standard tag library contains tags that allow SQL commands to be embedded directly
in a page. The most basic of these is the query tag, which allows a page to perform a
select and display the results. The tag's use is demonstrated in Listing 6.3, which selects
the list of artists from the table defined in Listing 6.1.

Listing 6.3 A page that gets data from a database

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<%@ taglib prefix="sql"

 uri="http://java.sun.com/jstl/sql" %>

<sql:query

 dataSource="jdbc:hsqldb:jspbook,org.hsqldb.jdbcDriver,sa"

 sql="select * from artist"

 var="artists"/>

<c:forEach items="${artists.rows}" var="artist">

<a href="<c:url value="show_cds.jsp">

 129

 <c:param name="artist_id" value="${artist.artist_id}"/>

 <c:param name="name" value="${artist.name}"/>

</c:url>"><c:out escapeXml="false"

 value="${artist.name}"/>

</c:forEach>

This example starts by importing the core library and a new SQL library that contains the
new tags. Immediately after loading the library, the query tag is used to load some data.
The query tag has many options, but the ones used here are the most common. First, the
tag needs to be told how to connect to the database where the information lives, which is
specified as the dataSource parameter. The exact form of this will make more sense
after Chapter 9, but for now, think of it as naming three things: the location of the
database, the kind of database, and the user name and password with which to connect to
the database. These are all specified on one line, separated by commas.
The sql parameter specifies the SQL to execute. The SQL used here is a simple select
command.
Finally, the var parameter names a variable in which the results of the query should be
stored. This is somewhat similar to the var parameter in the c:forEach tag in that both
make a value available elsewhere on the page.
Not coincidentally, the next place this variable is seen is in a c:forEach tag on the next
line. Note that this variable is used as the items, because this one variable contains
something like an array, each element of which will be one row of data. The artist
variable, defined in the c:forEach tag, will hold each row in turn.
Within the body of the c:forEach tag, the artist variable acts like the param variable in
Section 4.6, which has a different property for each value sent by a form. Similarly,
artist will have one property for each column, which may be obtained by using the
normal dot notation used with beans. The artist name, therefore, is obtained with
<c:out value="${artist.name}" escapeXml="false"/>

The escapeXml option to the c:out tag is new. Some bands have non-ASCII characters
in their names, such as The Crüxshadows or Björk. Such names can be stored in the
database by using the HTML that encodes these characters. For example, ü
represents the character ü. However, by default, the c:out tag will itself encode any
special characters it encounters, including ampersands. If this were allowed to happen, it
would turn ü into ü. Setting escapeXml="false" turns off this behavior and
should be used whenever the c:out tag will be displaying data that has already been
encoded for display.

 130

The artist name should be a link to a page where all of that artist's albums will be shown.
In order to do that, the url tag is used to construct a URL that will call the show_cds.jsp
page and pass along the artist_id of interest. This works just like the Java News Today
section list from the previous chapter. The artist's name is also passed along so that it can
be displayed on the following page. This is not strictly necessary, as once the artist ID is
available, the name could be obtained through another select. However, because the
name is already available, it may as well be used from here in order to save the effort of
doing an extra call to the database.
Listing 6.4 shows the show_cds.jsp page, which will once again use the sql:query tag.
Whereas in Listing 6.3, the query was always the same, here there must be a way to build
a where clause that includes the artist_id. Fortunately, the tag library allows for this.

Listing 6.4 A parameterized query

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<%@ taglib prefix="sql"

 uri="http://java.sun.com/jstl/sql" %>

<sql:query

 dataSource="jdbc:hsqldb:jspbook,org.hsqldb.jdbcDriver,sa"

 sql="select * from cd where artist_id = ?"

 var="cds">

 <sql:param value="${param.artist_id}"/>

</sql:query>

<h2>Albums by <c:out escapeXml="false"

 value="${param.name}"/></h2>

<c:forEach items="${cds.rows}" var="cd">

<a href="<c:url value="show_tracks.jsp">

<c:param name="cd_id" value="${cd.cd_id}"/>

<c:param name="name" value="${cd.name}"/>

</c:url>"><c:out value="${cd.name}"/>

 131

</c:forEach>

The sql:query tag here looks very similar to the one in Listing 6.3; both specify a
dataSource, var, and sql to run. In this example, however, the sql has a question mark
where the artist_id passed in from the previous page might be expected.
Correspondingly, the sql:query tag has a body containing a sql:param tag, whose
value is the very artist_id that was needed.
This is another feature of the sql:query tag. Before the query is run, question marks
within the sql parameter may be filled in with values from sql:param tags in the body.
Because the values of sql:param come from scripts, queries can be dynamically altered
as needed.
After the sql:query, the rest of the page is straightforward. Another c:forEach iterates
all the CDs and provides a link to see the tracks on another page.

6.4 Inserting Data from JSPs

To make the little CD application more useful, it can be expanded to allow the user to add
new artists, CDs, and tracks. Not surprisingly, the standard tag library provides another
tag to facilitate this: sql:update. Before jumping into seeing how this tag is used, it is
worthwhile to step back and consider what will need to be done in order to add a new
artist.
First, the user will specify the name in a form, which will be sent to another JSP, which
will use the new tag to perform an insert. It would be reasonable to expect that we will
use a sql:param in order to pass the name to the query. This is all straightforward
enough. However, it is important to keep in mind that the artist table has not only a name
but also an artist_id. Where will this ID come from?
One possibility would be to force the user to provide it along with the name. But this is
far from satisfactory; this ID is used only internally by the system to track data and has
no intrinsic meaning to the user. Hence the user should never see it. In addition, there is
no clear way in which the user would know what value to use.
It therefore seems that the system should keep track of IDs. That is perfectly fine, as such
information can easily be added to the database. It is merely necessary to create another
table of IDs, which will be called sequence, as it will provide sequences of ID values. Its
definition is simple:

 132

create table sequence (

 name char (60),

 id int)

insert into sequence values('artist',0);

insert into sequence values('album',0);

insert into sequence values('track',0);

With this table in place, creating a new artist would take the following steps:

1. Use a select to find the current ID where name is artist.

2. Use an update to increment that ID, so the next artist created will get a new
number.

3. Use the obtained ID in an insert to create the artist.

There is in fact a further complication. If two users try to add an artist at the same time,
they might both get the same ID in step 1 before either can get to step 2 to update the
current ID. Most modern databases have a way to prevent this, and it is supported by the
tag library through the jsp:transaction tag, which is beyond the scope of the book.
Listing 6.5 shows everything that must be done in a JSP in order to add an artist to the
database with a proper ID.

Listing 6.5 Using a JSP to add data to a database

<%@ taglib prefix="sql"

 uri="http://java.sun.com/jstl/sql" %>

<sql:query

 dataSource="jdbc:hsqldb:jspbook,org.hsqldb.jdbcDriver,sa"

 sql="select value from sequence where name='Artist'"

 var="ids"/>

<sql:update

 dataSource="jdbc:hsqldb:jspbook,org.hsqldb.jdbcDriver,sa"

 sql="insert into artist(artist_id,name) values(?,?)">

<sql:param value="${ids.rows[0].id}"/>

<sql:param value="${param.name}"/>

</sql:update>

 133

<sql:update

 dataSource="jdbc:hsqldb:jspbook,org.hsqldb.jdbcDriver,sa"

 sql="update sequence set value=? where name='Artist'">

<sql:param value="${ids.rows[0].id + 1}"/>

</sql:update>

New artist has been added!<p>

Return to the

artist list

The example exactly follows the steps outlined previously. The only noteworthy point is
that the ID obtained from the select is referred to as ids.rows[0].id. Recall that rows
is an arraylike object, suitable for using in c:forEach tags; therefore, element 0 of this
object will be the first row.

6.5 SQL and Beans

In Listing 6.5, it is immediately obvious that 99 percent of it is manipulating the model�t

he database�with only a single tiny line of view information announcing the completion

of the task. This is just plain wrong!
The view layer has too much model, and using the SQL tags as in the previous section is
fine for quick-and-dirty database applications. However, problems would soon arise
when dealing with a larger, more complex site. If ten pages use some hard-coded SQL
and then the structure of the database changes, it can be very difficult to find and fix all
the problems. Although it may seem as though a database, once designed, should never
change, requirements in the real world commonly shift over the course of a project.
The solution, as always, is to move the model layer, where it belongs, into some Java
beans. Fortunately, this is a simple exercise, as beans and databases already have a great
deal in common. A database row has a number of named columns, just as a bean has a
number of named properties. A table can have many rows, just as an array can have many
beans. In Chapter 5, these correspondences were used in a set of hard-coded beans to

 134

mimic a database. All that is necessary to complete the picture is to modify those beans
so they connect to a real database.
Tools that will automatically build a class or bean that reflects a table are available. A
very simple tool, Table2Bean, from Canetoad Software, is included on the accompanying
CD-ROM. As its name implies, Table2Bean takes a SQL table definition and builds a
bean. This bean can then provide easy mechanisms for interfacing with the underlying
table.
To see how this will work, consider CDBean, generated from the table in Listing 6.1.

1. If the cdId property is set, the bean will construct a SQL command, such as

SELECT * FROM CD WHERE cdId= the provided id, execute this statement, and
use the result to populate the rest of the properties.

2. After loading the data, any property can be changed by using the normal set
methods. The bean will also provide a special property, called save. If this
property is set after any other properties have been changed, the changes will be
saved back to the database with an UPDATE command.

3. Similarly, if the save property is set before the cdId property has been set, the
bean will assume that this is new data and will enter it into the database with an
INSERT command.

4. Finally, another special property, called beans, will return an array of beans that
match the current properties. If a page sets the artistId field to 1, the beans
property will return an array of all the albums from artist number 1.

The next chapter discusses how Java News Today will use these new beans, but the
principles can be examined by seeing how they could be used to simplify the CD
application. Listing 6.6 shows the new version of the page that displays all an artist's
albums.

Listing 6.6 Retrieving data through a bean

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<jsp:useBean

 id="cdBean"

 class="com.awl.jspbook.ch06.CdBean"/>

 135

<jsp:setProperty name="cdBean" property="artistId"/>

<h2>Albums by

<c:out escapeXml="false" value="${param.name}"/></h2>

<c:forEach items="${cdBean.beans}" var="cd">

<a href="<c:url value="show_tracks.jsp">

<c:param name="cd_id" value="${cd.cdId}"/>

<c:param name="name" value="${cd.name}"/>

</c:url>"><c:out value="${cd.name}"/>

</c:forEach>

The only difference is that the sql:query tag has been replaced by a jsp:useBean and
by jsp:setProperty tags; now the iteration goes over cdBean.beans. Although this is
no shorter than the database version, the conceptual difference is huge. Now this page
does not know whether the data is coming from a database or a serialized bean or is
connecting to a Web site in order to get its information. The details of the model have
therefore been hidden from the view, which is as it should be.
The difference is even more pronounced in the bean version of the page that adds an artist,
which is shown in Listing 6.7.

Listing 6.7 Storing data through a bean

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<jsp:useBean

 id="artistBean"

 class="com.awl.jspbook.ch06.ArtistBean"/>

<jsp:setProperty name="artistBean" property="name"/>

<jsp:setProperty

 name="artistBean"

 property="save"

 value="true"/>

 136

New artist has been added!<p>

Return to the

artist list

Now that's more like it! All the details of the ID are hidden away in the bean, so all the
view needs to do is load the data and then tell the model to save itself.
One small detail has been glossed over in these last two examples: how these beans get
the information necessary to connect to the database. This was passed in explicitly when
using the SQL tags, but the beans are able to hide this information by using a feature of
Java. It is possible for a Java class to load a resource given its name, so a resource called
"db" that holds the connection information has been created, and the beans know to load
that information when it is first needed.

6.6 Summary and Conclusions

A database is a collection of tables, and tables contain rows of data, organized into
columns. Each column contains one attribute of the row. SQL is a common language that
allows humans to communicate with databases, and the standard tag libraries make it
relatively painless to use SQL from within pages. For many reasons, however, it is better
to hide the SQL and other database information within beans.
Up to this point, Java News Today has been a somewhat uninteresting site, as there has
been no way to add new stories or make users' preferences permanent. This will change
in the next chapter, where JNT will move to a database and add editorial screens.

6.7 Tags Learned in This Chapter

sql:query Perform a query against a database
Parameters:
 dataSource: A string specifying how to connect to the database
 sql: The SQL to run; may contain parameters to be filled in, indicated by
 question marks
 var: The name of the variable in which to store the results
Body:

 137

 sql:param tags
 sql:update Update, create, or delete data from a database
Parameters:
 dataSource: A string specifying how to connect to the database
 sql: The SQL to run; may contain parameters to be filled in, indicated by
 question marks
 var: The name of the variable in which to store the results
Body: sql:param tags

sql:param Provide a parameter to SQL in a sql:query or sql:update tag
Parameters:
 value: The value to use; may be a script
Body: None

 138

Chapter 7. Java News Today: Part 2

Finally, after all the preliminaries and the read-only site of Chapter 5, Java News Today
is ready to start providing some content! Doing so has not been possible until now
because there was no good place to store this content. It would not make sense to have to
write a brand new JavaServer Page or manually update the beans used in Chapter 5 each
time a new story was published. What is needed is a JSP that will allow a reporter to
write a new story as easily as a user can read one. Databases, as covered in Chapter 6,
provide the means to build such functionality.

7.1 Designing the Tables

As a data model was already developed in Chapter 5, the simplest plan of attack would be
to turn this model into SQL and create the database. Once that's done, an object-relational
mapping tool could turn these tables back into beans, and the job would practically be
finished. The reason is that, if all the naming conventions for bean properties and column
names are carefully followed, the new beans will have the same property names as the
original ones, and none of the pages or forms will need to change at all. This is another
big advantage to the model/view/controller paradigm: It makes it possible to change
completely the way the model works; as long as the interfaces between the model and the
view stay the same, the view will not need to be rewritten.
Although it would be very easy to follow this plan of attack and recreate the existing site
on top of a database, doing so would preclude a great deal of possible new functionality
that a database could offer. Creating a site based on hard-coded beans leads to necessary
restrictions in the ways in which the data could be accessed. Because there is no easy way
to filter out a subset, it is necessary to show all the sections within in an edition and all
articles within a section. With a database and a set of beans that make it easy to construct
SQL where clauses, the data can be managed, grouped, and arranged in any way that
might be useful. In particular, users now have the option to view only sections in which
they are interested; further, it is possible to rank articles within those sections to indicate
which ones are likely to be the most interesting.
To support these features, the data model will need to be rethought a little. The basic
fields in the old beans will still be needed; for example, the ArticleBean will still need

 139

the text of the article, the time it was published, a headline, a summary, and the name of
the author.
This last item already suggests one major change that should be made. In the CD
database from Chapter 6, it was noted that rather than store the artist's name in every CD,
it made more sense to have a separate table of artists and to link artists to CDs through
the use of a small ID. The same is true for authors and articles; it would be possible to
connect an author to an article by storing in the article table the user_id of the author
rather than the author's name. This way, if an author's name changes, it will not be
necessary to change every article; the user_info table can simply be updated in one
place. This is also more efficient, as the name may take up 20 bytes to store, but an ID
will take only 4. This process of pulling common data into separate tables is called
normalizing the database.
More generally, when working with a database, it is important to consider what
relationships will exist between otherwise apparently unconnected data items. For
example, currently there is no relationship between sections and users, but for users to be
able to select the set of sections in their editions, such a relationship must be included in
the database. The question then becomes, How this should be modeled?
One possibility would be to add to the user_info table some additional columns, such as
wants_section_1, wants_section_2, and so on. But this is not very general; if it
creates a new section a year from now, JNT will need not only to update all the users but
also to change the very structure of the database and modify all the beans and JSPs that
use this table. That is something that no one should have to live through if it can be
avoided, and, fortunately in this case, it can be avoided.
Following the examples from Chapter 6, each of the tables will have a unique ID, so each
user will have a user_id, each section will have a section_id, and so on. So, to model
the connection between users and sections, another table that will have a user_id and a
section_id can be introduced. If user 50 does not want section 3, this new table would
have a row where user_id = 50 and section_id = 3 . A table like this, which holds only
the IDs of other tables and has no data of its own, is known as a join table.
It would also be possible, and in some ways simpler, to keep track of which sections a
user does want. The advantage of storing unwanted sections is that if a new section is
created, every user will initially get it by default and can then opt to turn it off. If the
database tracked only sections a user did want, the user would need to act explicitly to
add new sections and hence might miss out on some good content.
Two more new tables will be used to connect articles to users, although less directly. First,
the notion of a keyword will be added to the system. A keyword is a single word or short

 140

phrase that describes an article. This is more finely grained than sections; whereas a
section might deal with a broad category, such as "Java on consumer devices," the
keywords might list particular devices or vendors that support Java.
As each article may have many keywords, each connected to many articles, another join
table will be used to connect them. In order to do so, this new table will have a
keyword_id and an article_id. This also suggests creating a similar table to connect
users to keywords by maintaining a list of keyword_id and user_id pairs. This table will
allow users to indicate the set of keywords in which they are interested. With these two
tables, a user can be connected to an article by looking for good matches between article
keywords and user keywords.
The database design is almost finished; the only other thing needed is a way to ensure
that only Java News Today staff can create new articles. To do this, a new field will be
added to the user_info table to mark certain users as reporters. With that done, the SQL
needed to create the Java News Today database is shown in Listing 7.1.

Listing 7.1 The JNT schema

create table user_info (

 usr_id int,

 username char(40),

 password char(40),

 name char(20),

 bg_color char(6),

 text_color char(6),

 banner_color char(6),

 reporter_ind char(1)

);

create table section (

 section_id int,

 name char(20),

 summary varchar(1024)

);

create table article (

 article_id int,

 141

 section_id int,

 author_id int,

 created_date datetime,

 headline varchar(80),

 summary varchar(1024),

 text varchar(4096)

);

create table keyword (

 keyword_id int,

 name char(20)

);

create table user_sections (

 user_id int,

 section_id int

);

create table user_keywords (

 user_id int,

 keyword_id int

);

create table article_keywords (

 article_id int,

 keyword_id int

);

create table comment (

 comment_id int,

 article_id int,

 author_id int,

 created_date datetime,

 text varchar(4096)

);

 142

create table quiz (

 question varchar(80),

 answer1 varchar(80),

 answer2 varchar(80),

 answer3 varchar(80),

 correct_answer int

);

The names for fields and tables follow certain well-accepted conventions. Database
names use underscores to separate multiword names; when beans are generated from
these tables, the underscores will be removed, and the letter following the underscores
will be capitalized. Database fields ending with _ind are indicators with the value Y or N.
The equivalent bean property will have values true or false and will therefore be
suitable for use as the tests in c:if and c:when tags.

7.2 Adding Articles

With the new database and coding conventions established, adding new articles to the
database is quite simple. First, a link to the article creation page must be added to the
left-hand navigation, and a check must be done to ensure that this link is available only to
reporters. This is handled by a simple addition to the navigation, shown in Listing 7.2.

Listing 7.2 New link for reporters

<c:if test="${user7.isReporter}">

 <div class="bordered">

 Create a new article

 </div>

</c:if>

If the user has not yet logged in, the isReporter property will be empty, that is, neither
true nor false. In this case, the test will still fail, and the link will not be shown. The
check here is technically not sufficient, as it does nothing to prevent a malicious user
from going to create_article.jsp directly by entering the URL in his or her browser. To
prevent this, a controller is needed to handle site security; one will be built in Chapter 12.
The page to create articles is another standard HTML form. The author will need to be
able to select the section to which the new story should be added, a way to mark which

 143

keywords are relevant, and a big text box for the contents. The JSP is shown in Listing
7.3, and the result as viewed in a browser appears in Figure 7.1.

Figure 7.1. The article creation page.

Listing 7.3 The article creation page

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<jsp:useBean

 id="user7"

 class="com.awl.jspbook.ch07.UserInfoBean"

 scope="session"/>

<jsp:useBean

 id="edition7"

 class="com.awl.jspbook.ch07.EditionBean"/>

<jsp:include page="top.jsp" flush="true">

 <jsp:param name="title" value="Create Article"/>

 144

</jsp:include>

<table class="form">

<form action="article_handler.jsp" method="post">

<input

 type="hidden"

 name="authorId"

 value="<c:out value="${user7.userInfoId}"/>">

<tr>

 <td class="label">Section:</td>

 <td>

 <select name="sectionId">

 <c:forEach items="${edition7.allSections}"

 var="section">

 <option value="<c:out

 value="${section.sectionId}"/>">

 <c:out value="${section.name}"/>

 </c:forEach>

 </select>

 </td>

</tr>

<tr>

 <td class="label">Keywords:</td>

 <td>

 <c:forEach items="${edition7.allKeywords}"

 var="keyword">

 <input

 type="checkbox"

 name="keywordId"

 value=<c:out value="${keyword.keywordId}"/>>

 <c:out value="${keyword.name}"/>

 </c:forEach>

 </td>

</tr>

 145

<tr>

 <td class="label">Headline:</td>

 <td><input type="text" name="headline"></td>

</tr>

<tr>

 <td class="label">Summary:</td>

 <td><input type="text" name="summary"></td>

</tr>

<tr>

 <td class="label">Text:</td>

 <td>

 <textarea name="text" rows="5" cols="30">

 </textarea>

 </td>

</tr>

<tr>

 <td colspan="2" align="right">

 <input type="submit" name="go" value="Set Preferences">

 </td>

</tr>

</form>

</table>

<jsp:include page="bottom.jsp" flush="true"/>

Note that the lists of available sections and keywords come from the EditionBean. This
is appropriate, as this bean acts as the master container for all options on the site, as well
as the specific set of those options selected by each user.
Because all the work is done in a bean representing the model, as it should be, the view
portion of the article handler is almost trivial:
<jsp:setProperty bean="article" property="*">

<jsp:setProperty

 name="article"

 146

 property="useNowAsDate"

 value="true"/>

<jsp:setProperty bean="article" property="save"

 value="true">

The first line sets all the properties of the article, including the section and the text. The
first line also sets an array of keyword IDs, which the bean will use internally to set up
the proper entries in the article_keyword table. The second line sets a special property,
called useNowAsDate, of the bean. When this property is set, it will set the underlying
createdDate property to the current time. It would be possible to set createdDate
directly from the page, but working with date properties can be cumbersome, so the
useNowAsDate property was provided as a convenience.
Finally, the third line will then perform the save and will write all the data to the database.
It might seem that this extra jsp:setProperty tag could be avoided by using a hidden
input field, as was done in Listing 5.9, to pass the user's name to the comment handler:
perhaps something like
<input type="hidden" name="save" value="true">

However, this is not guaranteed to work. Nothing in the JSP specification says anything
about the order in which properties will be set. If the save property were sent along with
text and sectionId, it is quite possible that first sectionId would be set, then save,
and finally text. The net effect would be that an article would be placed in the database
with a sectionId but no content!

7.3 User Pages

As promised, very few changes need to be made to the pages from Chapter 5. The section,
article, quiz, and navigation can all stay almost exactly the same. The few things that do
need to change reflect the new use of normalized tables.
In the article page, it was formerly possible to obtain the author's name with
<c:out value="${article.authorName}"/>

But because the authorName is no longer kept in the ArticleBean but only the
authorId, an additional mechanism must be used to go from the ID to the author before
getting the name. Fortunately, the bean provides a means to do this, by providing an
author property that holds the appropriate UserInfoBean. Getting the name is then as
simple as

 147

<c:out value="${article.author.name}"/>

Note the use of a nested property.
The remaining user pages that need to be changed are those that now need to send data to
the database. These consist of the page that handles the saving of user preferences
(Listing 3.18) and the page that adds a comment to an article (Listing 5.9).
Recall that the user preferences are placed in the bean with the tag jsp:setProperty,
just as the one used to set the article properties. Therefore, all that is needed to write these
values to the database is another jsp:setProperty tag that sets the save property. This
will tell the bean to save its contents to the database, and because it will already have a
userInfoId from the time when the user logged in, it will know that data is being
updated instead of created.
Now that the preferences for an existing user can be saved, it is easy to allow the system
to create new users. First, the page should contain a message prompting users to sign up
with the site. The easiest way to do this is by adding a small message to the login form in
Listing 5.2:
Don't have an account yet?

Click here

to register with Java News Today!

It may seem odd that users would be sent to the user preferences page to sign up, as that
page lets existing users change their options. It would certainly be possible to create a
separate sign-up page, but consider what such a page would contain. It would need a
form that prompted for a user name, password, and real name, which would seem to be
the minimal information needed in order to register a new user. However, it would make
sense to give new users the option to set their preferences at the time they join, which
would mean that the sign-up page would have all the same fields as the user preferences
page, in addition to the new ones. It would instead seem to be easier to put all these fields
on the same page and use a conditional tag to turn off the ones that aren't always needed.
This modifies the user preferences page as shown in Listing 7.4.

Listing 7.4 The new user preferences page

<c:if test="${!user7.isLoggedIn}">

 <tr>

 <td class="label">Your name:</td>

 <td><input type="text" name="name"></td>

 </tr>

 148

 <tr>

 <td class="label">User name:</td>

 <td><input type="text" name="username"></td>

 </tr>

 <tr>

 <td class="label">Password:</td>

 <td><input type="password" name="password"></td>

 </tr>

</c:if>

<tr>

 <td class="label">Background color:</td>

 <td><input type="text" name="bgColor"

 value='<c:out value="${user7.bgColor}"/>'></td>

</tr>

<tr>

 <td class="label">Banner color:</td>

 <td><input type="text" name="bannerColor"

 value='<c:out value="${user7.bannerColor}"/>'></td>

</tr>

<tr>

 <td class="label">Text color:</td>

 <td><input type="text" name="textColor"

 value='<c:out value="${user7.textColor}"/>'></td>

</tr>

To ensure that this will work, consider what will happen when the user clicks the submit
button and goes to preferences_handler.jsp in each of the circumstances this page will
need to handle. In both cases, the result will be to set all the form variables and then set
the save property. This is the right thing to do, regardless of whether the user is signing
up or changing preferences. The latter case has already been considered and is known to
work. In the former case, the initial jsp:setProperty will set the additional user name

 149

and password fields; then, when the save property is set, the bean will recognize that
there is not yet a userId specified and hence will do a SQL insert instead of an update.
The upshot of all this is that once again, by putting all the hard work in the model layer,
the task of creating the view has been greatly simplified. If we did not have beans at our
disposal, we would need separate pages for new users and existing users and then two
other pages to handle saving the data in each of these cases. As an exercise, consider how
these cases would be handled if all this work needed to be done using only sql:query
and sql:update tags!

7.4 Other User Preferences

So far, the user preferences page has dealt only with simple properties: the ones that do
not involve the join tables. The problem with the remaining properties is twofold:
figuring out how to (1) display the user's current choices and (2) allow them to be
changed. The solutions to these problems will be different for sections and keywords
because of the different ways this information will be used.
A good way to figure out how to tackle such problems is to solve first them in raw SQL.
Then the SQL can be moved into the bean. Showing the list of sections the user has
selected not to display is easy:
select section.name

from section,user_sections

where section.section_id = user_sections.section_id

and user_section.user_id = ?

The question mark would get filled in with a sql:param from the current user.
Unfortunately, what is needed is the inverse of this: a list of all the sections that the user
does want. This could be done in three steps: (1) run the query, (2) run another query to
get the list of all sections, and (3) remove the items in the first list from the second list in
some Java code. This would work, but as a general rule, it is worth trying to use as few
queries as possible and to do as much work with those queries as possible. This is partly
for the sake of efficiency, as each query will take some time and impose some overhead
on the database and the network. In general, databases will also be able to manipulate
data more efficiently than the equivalent Java code.

 150

It turns out that it is possible to cook up a query that will do all the necessary work in one
step. This conceptually does the same thing that could be done manually in Java: Select
the items from user_section, and remove the matching items from section:
select * from section

where section_id not in

(select section_id from user_section

 where user_info_id = ?)

The inner select, the one in parentheses, retrieves the list of sections that the user does
not want; then the SQL keywords not in remove those sections from the outer select.
Now that the query has been designed, it will be put into the EditionBean as a new
property: selectedSections. This will alter the section list in the navigation as shown in
Listing 7.5.

Listing 7.5 The customized section list

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<jsp:useBean

 id="edition7"

 class="com.awl.jspbook.ch07.EditionBean"

 scope="session"/>

<jsp:useBean

 id="currentSection"

 class="com.awl.jspbook.ch07.SectionBean"/>

<jsp:setProperty

 name="currentSection"

 property="sectionId"/>

<c:forEach items="${edition7.selectedSections}"

 var="section">

 <c:if

 test="${currentSection.sectionId == section.sectionId}">

 151

 *

 </c:if>

 <a href="<c:url value="section.jsp">

 <c:param name="sectionId" value="${section.sectionId}"/>

 </c:url>"><c:out value="${section.name}"/>

</c:forEach>

One other point needs to be made about this example. The query to get sections requires
user_id as a parameter. If the user has not yet logged in, no ID will be available, and the
query will fail. This condition could be checked in the JSP with a c:choose tag. If
user.userId is empty, the page would then do what it did previously and iterate the
sections from edition.sections. However, this test has been placed in the bean for all
the usual reasons about keeping the view simple. In this case, it would be more correct to
put this check in the controller, as the model needs to be controlled based on an external
criterion.
Similarly, it will be necessary to notify the EditionBean of the user's ID when the user
logs in. This can be done with a simple addition to the login handler page:
<c:set name="edition7.userId" value="${user7.userId}"/>

Now that the navigation can make use of the user's section choices, a means for the user
to alter them is needed. The logical user interface for this would be a list of every section,
with a check box next to the ones the user would like to see. When the user goes to edit
the list, the sections already selected should be checked so the user does not have to
reenter the choices whenever adding or removing only one.
This again requires connection between the section and user_info tables but with an
additional complication. The page cannot show only the sections the user has selected, as
that would not allow the person to add one. Nor can it show only the ones the user has not
selected, as there would then be no way to remove one. This could be handled with two
queries, first iterating one set of sections and then the other. A better solution would be to
select all the sections in one shot, along with an indicator as to whether the user has
selected each.
This can be done with yet another feature of SQL: outer join. The idea is that a normal, or
inner, join between two tables A and B will have one row for each value common to both
tables. An outer join might have one row for every row in A. If B has matching data, that
data will be available; if not, those values will be marked as NULL.
To make these ideas more concrete, consider the two tables defined next.
create table character (character_id int,

 152

 character_name char(10))

create table actor (actor_id int, actor_name char(10))

insert into character values(1,'John Crichton')

insert into character values(2,'Aeryn Sun')

insert into character values(3,'Chiana')

insert into actor values(1,'Ben Browder')

insert into actor values(3,'Gigi Edgley')

A regular inner join could be used to get a list of actors and characters:
select character_name,actor_name

from actor, character

where character_id = actor_id

The result would be in the following table:

John Crichton Ben Browder

Chiana Gigi Edgley

However, this table is missing information about characters for whom the corresponding
actor is not available. This can be remedied with an outer join:
select character_name,actor_name

from character

left join actor

on character_id = actor_id

This produces the following table:

John Crichton Ben Browder

Aeryn Sun NULL

Chiana Gigi Edgley

This table contains all the information we have available and might serve to remind
someone to insert "Claudia Black" into the actor table at some point. It is now fairly
straightforward to use these ideas to construct an equivalent query for users and sections,
with an extra field to indicate which ones the user does not want:
select section_name,name,user_id from section

left join user_section

on section.section_id = user_section.section_id

 153

where user_section.user_id = ?

The result will have one row for each section. For those that the user does not want, the
row will also have the user's ID; sections that the user does want will have a value of
NULL for this column.
Hiding this query in the EditionBean will require a little more work. The easiest way to
do this is to add a new property, selected, to the SectionBean and let the EditionBean
set this property based on the results of the query. Pages can then obtain this specially
marked list of sections through a new allSections property, which can be used in the
user preferences page, as shown in Listing 7.6.[1]

[1] Of course, it would also be possible to use this property instead of selectedSections in the navigation

by using the value of the selected flag to determine whether to show the section. However, doing it that way would

have missed out on a perfect opportunity to introduce the concept of nested selects, which is well worth

knowing.

Listing 7.6 Selecting sections

<jsp:setProperty

 name="user7"

 property="clearSections"

 value="true"/>

<tr>

 <td class="label">Which sections do you want?</td>

 <td>

 <c:forEach items="${edition7.allSections}" var="section">

 <input

 type="checkbox"

 name="sections"

 value="<c:out value="${section.sectionId}"/>"

 <c:if test="${section.selected}">CHECKED</c:if>>

 <c:out value="${section.name}"/>

 </c:forEach>

 </td>

</tr>

 154

Note that options are marked as checked if the corresponding field is empty, because the
user should be shown the sections wanted, but the table keeps track of those not wanted.
When the form is submitted, the UserInfoBean will get passed an array of selected
section IDs, which it must then use to add or remove entries in the user_section table.
This requires a bit of data manipulation in the Java layer, which can be found in the code
for the UserInfoBean on the CD-ROM accompanying this book.
The keywords list, which will work almost exactly the same as the section list, will use an
outer join to select all the available keywords and simultaneously flag which ones the
user has selected. The result is easily added to the user preferences page and is shown in
Listing 7.7.

Listing 7.7 Selecting keywords

<jsp:setProperty

 name="user7"

 property="clearKeywords"

 value="true"/>

<tr>

 <td class="label">

 Select keywords in which you are interested:

 </td>

 <td>

 <c:forEach items="${edition7.allKeywords}" var="word">

 <input

 type="checkbox"

 name="keywords"

 value="<c:out value="${word.keywordId}"/>"

 <c:if test="${word.selected}">CHECKED</c:if>>

 <c:out value="${word.name}"/>

 </c:forEach>

 </td>

</tr>

The new user customization page, with these two options added, is shown in Figure 7.2.

Figure 7.2. The new customization page.

 155

Finally, the user's selected keywords and the set of keywords associated with each article
will be used to compute for each article a score that will be displayed on the front page
and the section page. Such a score can draw the user's attention to stories he or she is
most likely to find interesting.
This score will be computed by examining each keyword; if both the user and the article
either have or do not have that keyword, it will count for one point. The final score will
then be the total number of points, divided by the total number of keywords and
multiplied by 100 to produce a percentage. Of course, such a complex calculation should
never be done in the view, so it will be added to the ArticleBean. The ArticleBean will
therefore need to know for which user its score should be computed, but this is easily
handled by a jsp:setProperty tag. This modifies the section page as shown in Listing
7.8, with the result shown in Figure 7.3.

Figure 7.3. The new section page.

 156

Listing 7.8 The new section page

<jsp:useBean

 id="currentSection"

 class="com.awl.jspbook.ch07.SectionBean"/>

<jsp:setProperty

 name="currentSection"

 property="sectionId"/>

<dl>

 <c:forEach items="${currentSection.articles}"

 var="article">

 <dt><a href="<c:url value="article.jsp">

 <c:param name="articleId"

 value="${article.articleId}"/>

 </c:url>"><c:out value="${article.headline}"/>

 <c:if test="${user7.isLoggedIn}">

 <c:set target="${article}"

 property="userInfoId"

 value="${user7.userInfoId}"/>

 157

 (Score: <c:out value="${article.score}"/>)

 </c:if>

 <dd><c:out value="${article.summary}"/>

 </c:forEach>

</dl>

7.5 Advertising

Money does not really make the world go around; gravity and angular momentum take
care of that quite nicely. However, money can keep a Web site running, which at times
may seem almost as important. One of the most time-tested ways for a Web site to make
money is to sell space on each page to advertisers.
This is not fundamentally at odds with a usercentric site, such as Java News Today. No
one enjoys the endless repetition of ads for unwanted items or constant plugs to buy
shoddy or uninteresting goods. However, the Web can make shopping very easy and
convenient, and an advertisement for an item a user would like but did not know about is
a win for the user, the vendor, and the Web site.
The secret here is to show users only items that might appeal to them and to filter out all
the advertising "noise" that most people find so irritating. In other words, the key is
personalization, just as it is with content. By customizing the ads to the user, users will
not be bothered with irrelevant advertising, and advertisers are generally willing to pay
much more to ensure that their ads are seen only by people who might buy their products.
Again, everybody wins.
Because personalization will be the driving force behind JNT's ads, it should not be
surprising that ads will also be stored in the database. Once again, this means that the first
step will be to design the tables by considering what information needs to be stored.
The first and most obvious element is the text of each ad. In order to match ads with users,
the ads will need to be weighted according to relevant keywords, so an auxiliary table
mapping ad IDs to keyword IDs will be needed. This will work in much the same way
that keywords were associated with articles. Finally, most ads are sold based on a number
of impressions; in other words, an advertiser may pay a certain amount to ensure that the
ad is seen a certain number of times. The database will thus need to store the number of
impressions sold, and the bean will need to decrement this count each time the ad is

 158

viewed and remove it from the system when the count reaches 0. The new tables are
shown in Listing 7.9.

Listing 7.9 The advertising tables

create table ad (

 ad_id int,

 impressions int,

 text varchar(4096)

);

create table ad_keywords (

 ad_id int,

 keyword_id int

);

Because ads are marked with keywords, just as articles are, it is possible to use the
scoring mechanism that was developed for articles to compute a score for each ad. Rather
then show this score directly to the user, it can be used by a new AdManagerBean. This
bean will compute a score for every ad in the system and randomly return an ad from
among the ten with the highest score. This ad will be placed in the header, which is
shown in Listing 7.10.

Listing 7.10 The header, with an ad

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<jsp:useBean id="user7"

 class="com.awl.jspbook.ch07.UserInfoBean"

 scope="session"/>

<jsp:useBean

 id="adManager7"

 class="com.awl.jspbook.ch07.AdManagerBean"

 scope="session"/>

<center>

 159

 <h2>

 Java News Today: <c:out value="${param.title}"/>

 </h2>

</center>

<c:if test="${user7.isLoggedIn}">

 <div class="left">

 Hello <c:out value="${user7.name}"/>!

 </div>

</c:if>

Note that the AdManagerBean is stored in the session. The process of computing the score
may be somewhat time-consuming, and because the scores will not change much while a
user is on the site, the score does not need to be recomputed on every page.
The implication of this is that when the user logs in, the AdManagerBean must be told
who the user is in order to compute the scores, just as the EditionBean needed this
information to select the correct sections. This is done with another little addition to the
login handler page:
<c:set name="ads.userId" value="${user.userId}"/>

With such an ad in the header, the new index page will look like the one in Figure 7.4.

Figure 7.4. The new index page.

 160

A slight variation to this scheme is worth mentioning. Instead of asking the user to
specify manually which keywords are of interest, this information could be collected
automatically. Every time a user reads an article, it would be possible to track that
article's keywords and so over time build up a record of the user's behavior on the site.
This profile could then be used to select advertisements using essentially the same
AdManagerBean. Although there may be ethical concerns about the collection of
information without a user's knowledge or participation, there is no technical barrier to
doing so.

7.6 Summary and Conclusions

We now have a full working version of the Java News Today site. As with any site, more
could always be done. The keywords could also be used for an internal search engine. To
do this, one page would list all available keywords in a form, and these would be used in
a where clause to select all articles possessing that keyword.
Similarly, more functionality could be added to the editing features. At some point,
reporters will probably want to be able to make changes to old articles. This could be
easily accomplished by slightly modifying the article creation page to retrieve the article

 161

based on ID, populate the form with the current values, and then send it to a page that
does an update. The ability to delete articles could be handled similarly.
There is also no page where a new reporter, section, or keyword can be added. These
pages would also be straightforward, but because these things happen infrequently, it is
not too much of a burden to require them to be done by issuing SQL commands directly
to the database.
No doubt hundreds of other additions could be made to this basic setup, but that will
always be true. A Web site should always be considered a work in progress, and JSPs
make it easy to add new features or pages continually. Readers are encouraged to
experiment with the site code provided on the CD-ROM.

 162

Chapter 8. Working with XML

XML, the Extensible Markup Language, is many things to many people. XML provides a
mechanism to store documents in a format that can be read and manipulated as easily by
programs as by humans. XML provides the basis for programs running on different
computers and operating systems to talk to one another over the Web. XML is also a
language on top of which a huge number of industry-specific data formats have been
created, describing everything from corporate workflow to warehouse inventories to
geographic encyclopedias.
To support these and many more functions, a plethora of toolkits has become available to
simplify creating, processing, and manipulating XML documents. In an important sense,
XML provides another way to model data, and so great benefits are to be had by pairing
XML with a view technology, such as JavaServer Pages. The JSP specification itself,
along with a number of tags from the standard tag library, make this pairing possible on a
number of levels.

8.1 A Brief Introduction to XML

In its most fundamental sense, XML simply provides a way to add structure to
documents. Consider the problem that someone might face when e-mailing a list of CDs
to a friend. Clearly, this e-mail will need to contain a list of artists, albums, and tracks:
the same entities dealt with when constructing a CD database in Chapter 6. One approach
might be to use tab stops to group information together, as in Listing 8.1.

Listing 8.1 Structuring a document with tabs

The Crüxshadows

 Telemetry of a Fallen Angel (1996)

 Descension

 Monsters

 Jackal-Head

 The Mystery of the Whisper (1999)

 Isis & Osiris (Life/Death)

 Cruelty

 163

 Leave me Alone

 Wishfire (2002)

 Before the Fire

 Return (Coming Home)

 Binary

Although this is certainly easy for a human to read, and not even too difficult for a
computer, a lot of information is lacking. The numbers in parentheses indicate the year
the CD was released, but if someone is unfamiliar with that particular convention, the
numbers will appear meaningless. Also, simply looking at any particular word does not
indicate what it represents. "Jackal-Head" could be an artist, album, or track or even the
name of a store where the CD was purchased, a club where the band played, or a
restaurant. If the recipient does not know to expect a list in exactly this precise form, the

file becomes meaningless because the semantics of the information�what each piece

means and how the pieces relate to one another�are not present in the file.

In addition to that fundamental problem, this format has no standard. Perhaps one person
will choose to use tab stops of four spaces, whereas someone else will use eight. Maybe
someone will choose to have one new line between each album and two before the start
of each new artist. Although none of these changes will greatly impact the ability of a
person to read the file, it may complicate the creation of a program to manage such lists.
For simple data, such as a CD collection that deals with only three kinds of objects and
two relationships, these problems are manageable. But for much more complex systems,
these problems quickly become insurmountable. In a system that manages hundreds of
relationships, six tab stops might mean one thing one place in a file and another
somewhere else, and determining which is appropriate cannot be done without mentally
processing the whole document.
XML offers a way out of this nightmare by providing a very simple syntax with which to
add semantic information to documents. This syntax looks very much like HTML, which
is not surprising, as both XML and HTML have a common ancestor: SGML (Standard
Generalized Markup Language).
An HTML tag, such as <H1>...</H1>, was originally intended to convey a semantic
meaning: that the body of the tag is a level 1 header. Over time, this meaning has become
diluted; today, HTML is generally used to specify how data should be presented rather
than what the data means. In the terms that have been used throughout this book, HTML
has gone from describing a model to describing a view.

 164

Despite HTML's changing role, the fundamental idea of using such tags to denote
meaning is still sound. The only major piece missing is a way to create new tags to
describe arbitrary kinds of entities instead of a fixed set of headers, images, and so on.
This is where the "extensible" in Extensible Markup Language comes in.
Creating an XML document can be as simple as deciding what tags to use and how they
relate. Listing 8.1 could be rewritten in a much better, more structured way using XML,
as shown in Listing 8.2.

Listing 8.2 Structuring a document with XML

<?xml version='1.0' encoding='iso-8859-1'>

<artist name="The Crüxshadows">

 <album name="Telemetry of a Fallen Angel" year="1996">

 <track>Descension</track>

 <track>Monsters</track>

 <track>Jackal-Head</track>

 </album>

 <album name="The Mystery of the Whisper" year="1999">

 <track>Isis & Osiris (Life/Death)</track>

 <track>Cruelty</track>

 <track>Leave me Alone</track>

 </album>

 <album name="Wishfire" year="2002">

 <track>Before the Fire</track>

 <track>Return (Coming Home)</track>

 <track>Binary</track>

 </album>

</artist>

As this listing shows, the rules of XML are very much like those of HTML, despite some
important differences in terminology. First, the file starts with a declaration of what kind
of document it is and the character set it is using.[1] In XML, the entities in angle brackets,
or tags in HTML, are called nodes. Every node has a name, which is the primary
identifier. Listing 8.2 has nodes named artist, album, and track. Nodes are allowed to
have attributes, as in HTML. The album node has the attributes name and year. The use

 165

of the word name as an attribute may be a bit misleading but is seen quite often. Here,
name refers to the name of the album, not the name of the node.

[1] Listing 8.2 uses ISO-8859-1 in order to support the umlaut. Documents that use only ASCII characters will more

likely use the UTF-8 character set.

Nodes can be nested arbitrarily, but a document can, and must, have one and only one
top-level node, called the root node. In Listing 8.2, the artist node is the root. It would
not be legal to list the CDs from another artist in this same document by simply adding a
new artist node. Instead, both artist nodes would need to be contained within another
node, which might be called collection. Besides containing other nodes, a node can
contain a block of plain text, as the track nodes in Listing 8.2 do.
More freedom is possible when deciding on the format of an XML document. For
example, the name of each track could be placed in an attribute, such as <track
name="Binary"/>, instead of in the body of the track node. The choice is completely free,
although experience will often suggest one way over another. Note that if a node has no

body, it must end with a slash?TT>/>�to indicate that the file does not have a

corresponding close tag.
Listing 8.2 constitutes what is called a well-formed XML document, meaning that it
follows the rules of XML syntax, such as providing a single root node, properly matching
opening and closing tags, and so on. Beyond following these simple rules, an XML
document can and should have much more information. Listing 8.2 implies certain things
about the nodes that are used, such as the existence of the artist, album, and track
nodes; that artist may have a name attribute; and so on. However, these rules are not
explicitly stated; nor does the listing specify any others that may be important to enforce.
Placing an album node within a track node would still result in well-formed XML, but
this information would now be meaningless in context.
The mechanism to fix this is called a document type definition (DTD). The DTD
describes all the nodes that a document will use, their attributes, and their relationships.
This information, and more, could also be specified using an XML schema; however,
schemas are beyond the scope of this book, as are the art and science of creating DTDs.
A possible DTD for describing a CD collection is shown in Listing 8.3.

Listing 8.3 The document type definition

<!ELEMENT artist (album*)>

 166

<!ATTLIST artist name CDATA #REQUIRED>

<!ELEMENT album (track*)>

<!ATTLIST album name CDATA #REQUIRED>

<!ATTLIST album year CDATA #REQUIRED>

<!ELEMENT track (#PCDATA)>

Once such a DTD is created, the document can reference it with a single line at the top:
<!DOCTYPE artist SYSTEM "cd.dtd">

With the inclusion of a DTD, like Listing 8.3, an XML document can be not only well
formed but also valid. Such a document not only is syntactically correct but also follows
all the rules and is therefore semantically correct. Flipping tags around in a meaningless
way would now render a document invalid. This check can be done very early, when the
document is first parsed, avoiding any potential errors that could result from bad data
getting farther into the system. In addition, providing a DTD will often allow the data to
be parsed and represented more efficiently. Many XML editors are also able to read a
DTD and can ensure that the rules are followed while the document is being created or
changed.

8.2 Using XML in JSPs

As an XML document is merely a bunch of text, creating one through a JSP is no more
difficult than creating an HTML document. Listing 8.4 shows a JSP that retrieves CD
information from a database and generates the CD collection from Listing 8.2.

Listing 8.4 Generating XML with a JSP

<%@ page contentType="text/xml" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<jsp:useBean

 id="artist"

 class="com.awl.jspbook.ch08.ArtistBean"/>

 167

<jsp:setProperty

 name="artist"

 property="*"/>

<collection>

 <artist name="<c:out escapeXml="false"

 value="${artist.name}"/>">

 <c:forEach items="${artist.cds}" var="cd">

 <album name="<c:out value="${cd.name}"/>">

 <c:forEach items="${cd.tracks}" var="track">

 <track name="<c:out value="${track.name}"/>"/>

 </c:forEach>

 </album>

 </c:forEach>

 </artist>

</collection>

In almost all respects, this example is identical to Listing 6.6, the major difference being
the use of XML tags here instead of HTML. As it will not be returning an HTML
document, it is important that this page notify the browser what kind of data to expect.
This is accomplished by the use of the page directive at the top. Telling the browser that
it will be getting an XML document allows the browser to present the data properly. For
example, both Mozilla and Internet Explorer have a special mode that allows users to
open and close portions of XML documents interactively. In Figure 8.1, which shows
Mozilla's view of such data, a + in front of a node indicates that it may be expanded by
clicking it; conversely, - means that the node can be collapsed.

Figure 8.1. The browser view of an XML document.

 168

More interesting is that the output of this page contains all the data from the database,
and the DTD contains almost all the information present in the SQL schema from Listing
6.1. This suggests a deep connection between databases and XML, and because there is
already a known relationship between databases and JavaBeans, this would suggest that
all three are in some sense interchangeable.
To an extent, this is true. Just as tools can create beans from databases, tools can create
database schemas from XML DTDs and vice versa. Tools can also convert between
DTDs and beans, most notably Sun's JAXB toolkit, available at
http://java.sun.com/xml/jaxb/.
All three types of relationships are ways to store and manipulate data. Each one has
strengths that make it well suited to particular tasks. Databases are appropriate for storing
large quantities of data and retrieving it based on arbitrary criteria. XML is appropriate
for storing and transmitting relatively small amounts of data and for data that needs to be
translated programmatically into other forms. Beans, as seen numerous times, are well
suited for moving data from the underlying model to the view or, more generally, for
providing access to the model from other code.

8.3 Selecting Data from an XML Document

 169

If the beans from Chapter 6 were used in a JSP to navigate through a collection of cds,
the page might use an expression such as
collection.artist[0].album[2].track[5]

A similar but more powerful expression language for navigating XML documents is
XPath, which plays a major role in the way JSPs use XML.
Syntactically, XPath resembles traversing a set of beans except that the separator is a
slash (/) instead of a dot (.), and arrays start counting from 1, not 0. Therefore, the XPath
expression that does the same thing as the preceding bean expression would be
/collection/artist[1]/album[3]/track[6]

Note that the expression also starts with a leading slash.
XPath and beans diverge beyond the simple mechanism used to select a specific element.
One powerful feature of XPath is its ability to specify only part of an expression, and
such a partial expression will retrieve all elements that match. The simplest example of
this would be to leave off the last set of square brackets, as in
/collection/artist[1]/album[3]/track

This specifies all tracks on the third album of the first artist. This idea can be extended by
leaving off more array specifiers. The following, for example, would return all tracks on
all albums by the first artist:
/collection/artist[1]/album/track

Indexed and nonindexed elements can be freely mixed. The following would return the
second track on each album:
/collection/artist[1]/album/track[2]

Portions of a path can even be omitted entirely by using two slashes, as in //track,
which would return all tracks from albums by all artists.
Attributes can be specified by prefacing the name with an at sign (@), so in order to get
the name of the first artist, the expression would be /collection/artist[1]/@name.
Attributes can also be used in brackets to restrict the set of returned data. The expression
//album[@name='Wishfire']/track would return all tracks from all albums named
"Wishfire," of which there happens to be only one.
Much more could be said about XPath, but this will be sufficient for the remainder of this
book. Readers interested in the full specification can find it at
http://www.w3.org/TR/xpath; a nice tutorial is online at
http://www.zvon.org/xxl/XPathTutorial/General/examples.html.

 170

8.4 Processing XML in JSPs

The standard tag library provides a number of tags that make it easy and natural to move
through XML documents using XPath. An example of these tags in action is shown in
Listing 8.5.

Listing 8.5 Using XPath expressions in a JSP

<%@ taglib prefix="x"

 uri="http://java.sun.com/jstl/xml" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<c:import

url="http://localhost:8080/jspbook/chapter08/

 collection.jsp"

var="xml"/>

<x:parse xml="${xml}" var="doc"/>

Albums by <x:out select="$doc//artist[1]/@name"/>:

 <x:forEach select="$doc//artist[1]/album" var="album">

 <x:out select="$album/@name"/>

 </x:forEach>

First, note that this example loads a new portion of the standard tag library, which is
imported with the prefix x. The first new tag used in this example, c:import, is not
technically a part of the XML tags but is often used in conjunction with them. The tag
c:import works like a superenhanced version of the jsp:include tag. Amazingly,
c:import can grab data from anywhere, not only from the site where the page lives. This
makes it possible for sites to include content from other sites, although in general this
should be done only with the other site's knowledge and permission. This ability works
especially well in conjunction with XML, as will soon be demonstrated.

 171

The c:import tag stores the data it has read in a variable rather than automatically
sending it to the user. This makes it possible to process this data before the user sees it,
which is what will be done here. In this case, the data from the collection page from
Listing 8.1 has been put into a variable called xml. This data could then be shown directly
to the user with a simple <c:out value="${xml}"/>.
Rather than display this data, it is instead passed to another tag, x:parse, the first of the
new XML tags. This tag takes a block of XML and processes it internally into a form that
can be used more efficiently. The results of this conversion are stored in yet another
variable, which has been called doc.
Next, data is extracted from this internal representation with the x:out tag. This tag
works somewhat like c:out but obtains the value to display from a combination of the
expression language and an XPath expression. The JSP XML tags allow the beginning of
a select expression to start with a number of expression language identifiers, such as the
variable doc that was created with the x:parse tag. Immediately following that can be
any valid XPath expression, which will be used to pull data from the variable. Here, the
pages gets the name of the first artist in the collection.
Next is an x:forEach tag, which is to c:forEach what x:out is to c:out. The
x:forEach tag will repeat some action for every element returned by an XPath
expression, which in this case is all albums from the first artist. As with c:forEach, each
time through the loop, the current value can be assigned to a variable, in this case one
called album.
Within the body of the x:forEach tag is another x:out, which displays the value of the
name attribute for each album. Because album holds each of the XML album tags, the
XPath portion of this second x:out tag does not need the full path starting from the top
but instead needs to know only how to get to the name attribute from each album tag.
Note that it would also have been possible to write this loop as
<x:forEach select="$doc//artist[1]/album/@name"

 var="name">

 <x:out select="$name"/>

</x:forEach>

This loop would have the effect of looping over all album names instead of over all
albums. This works, as all the page will be showing is the name, but if it had to show
both the name and the year the album was released, the page would have had to loop over
the albums and then use two x:out tags to display the two different attributes.
The x:if, x:choose, x:when, and x:otherwise tags do essentially the same things as
their counterparts from the c library, except that each can take an XPath expression

 172

instead of a value from the expression language. This functionality was covered in
Chapter 4 and so will not be repeated here.

8.5 Formatting XML

Listing 8.5 does two separate but related things. It pulls out a chunk of an XML
document, using the XPath expression //artist[1]/album, and then builds some
HTML out of the values in the XML in the body of the x:forEach. This second part,
translating XML into another format, is so common and so important that a whole new
language?span class="docEmphasis">XSLT (Xtensible Stylesheet Language

Transformations)�was developed to make it easier.

This language uses many of the ideas that have already been discussed. To begin,
consider what would be needed in order to find every artist's name from a CD collection
in an XML document and output the string "Albums for" followed by the name, enclosed
in an H1 tag. This would pose no challenge: Simply specify the set of nodes to loop over
with an x:forEach tag, using //artist as the set of items. Then, within the x:forEach
tag, obtain the desired string, using <x:out select="@name"/>.
XSLT takes these same concepts but replaces the idea of selecting a set of tags and then
iterating them, substituting with the notion of patterns. Each clause of an XSLT file
specifies a pattern to find in the XML file, such as all artists, all albums with a given
name, or any other possibility XPath provides. A provided output template may include
elements selected from the XML that matched the input. For example, the XSLT that will
format artist names as desired is
<xsl:template match="artist">

 <h1>Albums by <xsl:value-of select="@name"/></h1>

</xsl:template>

This looks like the corresponding JSP code, with xsl:template playing the role of the
x:forEach and xsl:value-of replacing the x:out. It is important to note the conceptual
difference, however; xsl:template is not an iteration operator and does not perform an
activity for every element of a set. Instead, it provides a rule saying that whenever and
wherever the XPath expression given as match is found, the body will be processed.
A similar clause could be added to put album names in level 2 headers:

 173

<xsl:template match="album">

 <h2><xsl:value-of select="@name"/></h2>

</xsl:template>

However, one more thing must be done to make both of these clauses fit together. The
rule given for artist specifies that a certain string should result and that no other actions
should be taken. To get it to continue examining the rest of the document, XSLT must be
told to do so, which can be done by adding the following after the string:
<xsl:apply-templates select="album"/>

This indicates that XSLT should continue processing the album elements within the
artist. Order is important here; if xsl:apply-templates appeared before the string,
the result would show first the albums and then the artist.
Listing 8.6 rounds out the set of translations by putting track names in a bulleted list.

Listing 8.6 The full XSLT file

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="artist">

 <h1>Albums by <xsl:value-of select="@name"/></h1>

 <xsl:apply-templates select="album"/>

</xsl:template>

<xsl:template match="album">

 <h2><xsl:value-of select="@name"/></h2>

 <xsl:apply-templates select="track"/>

</xsl:template>

<xsl:template match="track">

 <xsl:value-of select="@name"/>

</xsl:template>

 174

</xsl:stylesheet>

Note that the rule for album also needs an xsl:apply-templates in order to process the
tracks.
Once an XSLT file has been defined, using it from a JSP is almost ridiculously easy!
Such a page is shown in Listing 8.7.

Listing 8.7 Using XSLT from a JSP

<%@ taglib prefix="x"

 uri="http://java.sun.com/jstl/xml" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<c:import

url="http://localhost:8080/jspbook/chapter08/

 collection.jsp"

var="xml"/>

<c:import

 url="http://localhost:8080/jspbook/chapter08/style.xsl"

 var="xslt"/>

<x:transform xslt="${xslt}" xml="${xml}"/>

In this example, the XML and XSLT files are loaded using c:import tags. Then the
transformation is performed and the result displayed with the new x:transform tag. As
the final outcome of the transformation is HTML, the content type need not be set, and a
browser will be able to render it in the usual way, as shown in Figure 8.2.

Figure 8.2. The result of an XSLT translation.

 175

In a sense, this process has split the view layer into two smaller components. One, the
XML, provides data from the model to the view. The second, the XSLT, contains all the
presentation information. Using pure JSPs, these two actions are typically intertwined,
with some bean tags getting data from the model and various iteration and conditional
tags munging that data into the desired presentation.
Both of these operations may legitimately be considered part of the view, and so having
them in the same JSP is not a bad design. However, splitting them into separate
components offers some new possibilities. It is often true that splitting pieces of a
complex system into separate modules makes it easy to add new functionality.
In this case, one new piece of functionality is the ability to change the apparence of a
page easily without changing any of the underlying implementation. Listing 8.8 shows an
alternative XSLT file that uses tables to format a CD collection instead of itemized lists.

Listing 8.8 An alternative style

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="album">

 <table border="1">

 176

 <tr>

 <td><xsl:value-of select="parent::artist/@name"/></td>

 <td><xsl:value-of select="@name"/></td>

 </tr>

 <xsl:apply-templates select="track"/>

 </table><p></p>

</xsl:template>

<xsl:template match="track">

 <tr><td colspan="2"><xsl:value-of

 select="@name"/></td></tr>

</xsl:template>

</xsl:stylesheet>

This XSLT file does nothing for artist nodes. When it encounters an album, it creates a
new table, the first row of which will have a column for the artist name and another for
the album name. The artist name is obtained with a new kind of XSLT expression:
parent::artist/@name. The parent:: portion indicates that the value should be
obtained from the parent node, that is, the node that contains the current one. Because
album nodes are contained within artist nodes, this will get the artist; from there, getting
the name is done as usual.
Now that a second style has been defined, Listing 8.7 can be easily modified to switch
between them, based on user preference, as shown in Listing 8.9.

Listing 8.9 Allowing the user to choose a style

<%@ taglib prefix="x"

 uri="http://java.sun.com/jstl/xml" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<c:import

url="http://localhost:8080/jspbook/chapter08/

 177

 collection.jsp"

var="xml"/>

<c:choose>

 <c:when test="${param.style == 'list'}">

 <c:import

 url="http://localhost:8080/jspbook/chapter08/style.xsl"

 var="xslt"/>

 </c:when>

 <c:otherwise>

 <c:import

 url="http://localhost:8080/jspbook/chapter08/

 tablestyle.xsl"

 var="xslt"/>

 </c:otherwise>

</c:choose>

<x:transform xslt="${xslt}" xml="${xml}"/>

This example simply uses a c:choose tag to load one of two XSLT files into the xslt
variable, which will then be used by the x:transform tag. The result of formatting with
the table-based XSLT file is shown in Figure 8.3.

Figure 8.3. An alternative XSLT translation.

 178

8.6 Java News Today and XML

In order to use these new features, Java News Today will be creating XML versions of a
few of its pages, notably a stripped-down version of the index and section pages. These
pages will not contain some of the dynamic elements, such as the login form or quiz.
Both of these elements can be accomplished with a single JSP, as the only difference is
whether to obtain the article list from the section or the edition. This JSP is shown in
Listing 8.10.

Listing 8.10 The XML version of JNT

<%@ page contentType="text/xml" %>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jstl/core" %>

<jsp:useBean

 id="currentSection"

 class="com.awl.jspbook.ch07.SectionBean"/>

 179

<jsp:useBean

 id="edition8"

 scope="request"

 class="com.awl.jspbook.ch07.EditionBean"/>

<jsp:setProperty

 name="currentSection"

 property="sectionId"/>

<c:choose>

 <c:when test="${empty currentSection.sectionId}">

 <c:set var="articles"

 value="${edition8.recentArticles}"/>

 <c:set var="sectionName" value="Java News Today"/>

 </c:when>

 <c:otherwise>

 <c:set var="articles"

 value="${currentSection.articles}"/>

 <c:set var="sectionName"

 value="${currentSection.name}"/>

 </c:otherwise>

</c:choose>

<javaNewsToday>

 <section><c:out value="${sectionName}"/></section>

 <articles>

 <c:forEach items="${articles}" var="article">

 <article>

 <headline>

 <c:out value="${article.headline}"/>

 </headline>

 <summary>

 180

 <c:out value="${article.summary}"/>

 </summary>

 <date>

 <c:out value="${article.createdDate}"/>

 </date>

 </article>

 </c:forEach>

 </articles>

</javaNewsToday>

The block of code at the top of this example determines whether the user is requesting a
section or the index page, based on whether a sectionId has been provided. The code
block then stores a list of articles in a variable called articles and a section name in
sectionName. This technique has not been seen before, but it works very much like the
variables created by the c:import tag. The rest of the page is a standard c:forEach used
to create the XML.
The goal of this XML representation of the site is not to replace the existing pages, which
are working well enough as they are. Instead, this XML layer allows Java News Today to
offer its content to other sites, as well as directly to users.
As mentioned, the c:import tag can pull pages from anywhere, not just locally. This

means that if another Java site�say, javamonkeys.com�were interested in giving its users

access to Java News Today's articles, it could import the XML file and then format it
with its own XSLT file in order to make it mesh seamlessly with the rest of its site.
This ability to provide one site's content to other sites is called syndication and is quite
popular. When properly done, it can benefit both sites. In this case, javamonkeys.com can
offer users additional reasons to visit its site; in exchange, these additional users will
learn about Java News Today and may wish to visit the JNT site directly. It is also
possible for sites to charge each other for syndicated content or to swap advertising
banners.
What makes all this possible is that XML is a standard format. Javamonkeys.com doesn't
need to know anything about JNT's database layout, and JNT doesn't need to allow
javamonkeys.com to access its database directly, which could be a security risk.

 181

8.7 Summary and Conclusions

XML wraps data in an extensible set of tags so that documents can carry not only the raw
data but also information about what the data means and how it interrelates. By providing
a standard mechanism to store and transmit data, XML greatly simplifies the process of
communication between different systems or different parts of the same system.
Creating XML files with JSPs is no more difficult than creating HTML; all the same
principles apply. Once a JSP has constructed an XML representation, this data can be
searched, tested, or iterated, using the XPath language and XML equivalents of many of
the tags in the c portion of the standard tag library. In addition, XML data can be
transformed from one form into many others, including HTML, through XSLT.

8.8 Tags Learned in this Chapter

c:import Imports data from any URL and stores it in a variable
Parameters:
 url: The URL to load
 var: The name of the variable in which the data should be stored
Body: Optional; if present, may be any number of c:param tags, whose values will
be sent to the named URL

x:parse Transforms an XML document to an internal form that can be used by
other tags
Parameters:
 xml: An expression specifying where the XML text is stored
 var: The name of the variable in which the resulting internal form should be
 stored
Body: If no xml parameter is specified, the XML text may be put in the body.

x:out Displays a value
Parameters:
 select: An XPath expression to be evaluated and displayed
Body: Arbitrary JSP code

 182

x:forEach Repeats a section of the page for every item in an array
Parameters:
 items: An expression specifying the array to use, most likely a bean property
 var The name of the variable with which each element in the array will be
 referred
Body: Arbitrary JSP code

x:if Conditionally includes a portion of the page
Parameters:
 test: An expression that should be a logical test of a property, which may
 include XPath elements
 var: if present, names a variable in which the result of the expression will be
 stored
Body: Arbitrary JSP code

x:choose Includes one of several portions of a page
Parameters: None
Body: Arbitrary number of x:when tags and, optionally, one x:otherwise tag;
nothing else is permitted

x:when One possibility for an x:choose tag
Parameters:
 test: An expression that should be a logical test of a property, which may
 include XPath elements
Body: Arbitrary JSP code

x:otherwise The catch-all possibility for an x:choose tag. If none of the
expressions in the when tags evaluate to true, the body of the otherwise will be
included.
Parameters: None
Body: Arbitrary JSP code

 183

Chapter 9. A Small Cup of Java

At many points throughout this book, examples could be discussed only so far before
running into a boundary. Those boundaries were frequently demarcated by the transition
from the view into the model, but the real issue is that on one side of this boundary lives
the JSP code and on the other side the unexplored territory of Java code.
In part, this division has been made deliberately; one of the impetuses for the creation of
JSPs and for separating working into a model part and a view part was to allow page
authors to create interactive, dynamic Web sites without needing to know any Java. But
in another sense, all divisions between knowledge are arbitrary, and page authors could
benefit from knowing at least some Java.
To those who have never programmed before, programming may seem like a mystical
black art, beyond the ken of mere mortals. OK, it may be a bit spooky, but there is no
reason why everyone cannot learn to program. This chapter will not teach programming;
nor will it completely cover the Java language. Many good books will do this, including
Introduction to Programming Using Java: An Object-Oriented Approach, Java 2 Update
by David Arnow and Gerald Weiss and The Java™ Tutorial, Third Edition: A Short
Course on the Basics by Mary Campione, Kathy Walrath, and Alison Huml (Pearson
Education, 2001). A number of colleges and training centers offer courses in Java for
programmers and nonprogrammers.
This chapter will also not explain how to use Tomcat or any other development
environment. See the documentation for the relevant product for this information or the
accompanying CD-ROM for information on setting up Tomcat.
What this chapter will do is introduce enough Java basics to follow the code that appears
throughout the subsequent chapters. These basics should also be as much Java as most
JSP authors will ever need, although, of course, it is never a bad idea to know more.
Learning to program in Java will enable JSP authors to create new beans and other utility
classes, as well as write servlets instead of JSPs when appropriate.

9.1 Expressions

Conceptually, an expression is simply a sequence of characters representing a value. Such
expressions have already been encountered via the expression language used in many

 184

tags. For example, article.author.name is an expression representing the name of an
author who wrote an article, as used in the Java News Today site. Expressions in Java are
basically the same thing, although their syntax and meaning are different from
expressions in the tag expression language.
To start with, here is an incredibly simple Java expression:
2

Obviously, this expression represents the number 2. Expressions can be more complex:
((8 / (2 * 4)) + 3) - (8/4)

This expression too represents the number 2. In this expression, +, -, * and / are called
operators, as they perform an operation on two expressions to produce a result. In a
numeric context, these operators do the expected things.

9.2 Types

The numbers in all the previous examples have been integers: numbers with no decimal
part.[1] Division on integers works slightly differently from division on numbers in the real
world. For example, the following evaluates to 3, as 3 is the largest integer that, when
multiplied by 2, is less than 7:

[1] In computer science, integer, real, and similar terms typically do not mean exactly the same things as the

corresponding terms used in mathematics. For one thing, the set of integers in Java is not infinite.

7 / 2

If a program wanted this to evaluate to 3.5, the numbers should be Java doubles, or
double-precision floating-point numbers, instead of integers. This would be expressed by
using decimal points, as in
7.0 / 2.0

This example illustrates an important and fundamental aspect of the Java programming
language. Everything in Java has a value, such as 2 or 3.1415, and a type. This was also
true in SQL; when defining a column, it is necessary to assign a name, such as
article_id, as well as a type, such as int. If Java is expecting an expression of a certain
type in a particular context, that will restrict the possible values that can be used in that
context.

 185

Java supports a number of built-in, or primitive, types. We have already seen doubles and
integers, which Java calls ints. Java can also manipulate text, using the String type.
Strings are represented by surrounding them with quote marks:
"This is a Java string!"

It is important to keep in mind that "2" and 2 are very different things to Java, even
though they may look the same. Do not be fooled by what they look like; the types are
different, which is what matters.
String expressions can also be more complex:
"This is a " + "Java string!"

Here, the + operator is used to denote concatenation, which simply means appending two
strings together. The result of this expression is the same as the previous one. This is the
only important instance in which an operator does two different things based on the type
of the expression it is operating on.[2] Technically, + applied to two doubles does
something different from + applied to two integers, but for the most part, differences like
this can be ignored.

[2] Some languages allow operators to be defined and created by programmers, allowing for overloading. Java is not

one of these languages.

Under some circumstances, Java automatically converts part of an expression from one
type to another. In the following, for example, the 2 will be internally converted to 2.0,
and the result of the expression will be a double:
7.0 / 2

The full set of type-conversion rules is available in any book on Java, but the general rule
is that Java never automatically goes from one type to another with less information. The
double-precision floating-point number 2.0 has more information than 2, so this
conversion can happen automatically.
Java will also automatically convert most types to a String, when the result of an
expression should be a String. The following expression will evaluate to the string "22":
"2" + 2

The second 2 is first converted to a String, yielding "2", which will then be appended to
the first String.
It is also possible to convert a number of one type explicitly into another type, which is
done by specifying the target type in parentheses before the value:
(double) 3

This example specifies a double number built from 3, which will be equivalent to 3.0.

 186

It is also possible to do conversions that lose data in this way, such as
(int) 6.75

This will yield the value 6, the result of simply chopping off the decimal part. Java would
never perform such a conversion automatically, but it is perfectly valid for a programmer
to do so.
This kind of moving from one type to another is called casting. It may help to think of an
actor being "type cast," meaning forced into a particular role. Casting will become very
important once objects and classes have been introduced.

9.3 Storing Values

All the values seen so far have been literals, meaning that they represent themselves. Java
also supports variables, which can be thought of as boxes that can contain any value and
whose value can be changed throughout the course of a program.
Before a variable can be used, it must be declared, which will tell Java the name and type
of the variable. A typical declaration might look like
int aNumber;

The semicolon designates the end of a Java statement, which is slightly different from an
expression. A statement does something, whereas an expression has a value.
The preceding statement creates a new "box" called aNumber, which can hold an integer.
A value can be placed in this box with an assignment, which might look like
aNumber = 2 + 4 - 7;

This sets aNumber to -1. Once it has a value, a variable can be used in expressions just
like any other value, such as the following:
2 - aNumber

This represents the number 2 - (-1), which equals 3.
Variables can also be changed as many times as desired:
aNumber = 1;

aNumber = aNumber + 1;

After these two lines are encountered in a program, aNumber will be 2. Note that this is
starting to look like algebra, although the symbols have a subtly different meaning. In
algebra, the second statement would be meaningless, as a number can never be equal to

 187

itself plus 1. In Java, however, this statement means "compute aNumber + 1, which is 2,
and then put that value back in the box called aNumber."
If a statement or expression tries to mix types in a way that Java cannot automatically
resolve, an error will be reported when the programmer tries to convert the program into
a form that can be run. Either of these statements will cause an error:
aNumber = 2.0;

aNumber = "Hi there";

9.4 Method Calls

Java allows programmers to create methods, which can be thought of as black boxes with
some number of inputs and one output. Values of particular types are dropped into the
inputs, and a value of a, possibly different, type comes out of the output. If a method
called max has been defined, which takes two integers and returns the greater of the two,
the following expression will have the value 8:
max(8,3)

Method calls can be used in other expressions; the following will set aNumber to 10:
aNumber = max(8,3) + 2;

The values given to a method�its arguments�can also be arbitrary expressions. The

following expressions are both valid:
max(3+2,12)

max(11,max(13,20))

However, the following is not, because max() can take only integer arguments:
max(2,"some string")

Some methods do not return a value. These methods can be used as statements. One very
common such method is System.out.println(). For the moment, don't worry about the
apparently strange name of this method; the important thing is what it does: print its
argument to the user's terminal or window. This method might be used in any of the
following ways:
System.out.println(2);

System.out.println(7.3 / 2.1);

System.out.println("Hello, world!");

System.out.println("The current value of aNumber is " +

 188

 aNumber);

The last one will convert aNumber to a string, append this string to "The current value
of aNumber is", and print the result.

9.5 Conditionally Evaluating Code

Frequently, a portion of a page should be shown only under certain circumstances; for
example, in the JNT navigation, the link to create new articles should be shown only to
reporters. This condition has been handled by the c:if and c:choose tags. Similar
constructs in Java allow code to be run only when appropriate.
A number of operators, such as + and / have already been encountered; all operate on
numbers and produce another number. Another class of operators checks the truth of an
expression, such as whether one value is less than another. This would be expressed in
the way one might expect:
5 < 23

The type of this expression is boolean; it can have one of the two values true or false.
In this expression, the value is true.
Just like any other expression, any value can be replaced by a more complex expression,
possibly including variables or method calls:
max(aNumber,17) < anotherNumber

boolean expressions can also be combined with the and and or operators, expressed as
&& and ||, respectively:
(aNumber > 12) && (aNumber < 88)

This will be true if aNumber is greater than 12 and aNumber is also less than 88.
It is possible to create boolean variables and assign the result of expressions to them, and
so on. However, boolean expressions are most often used in conditionals, Java
constructs that can do different things based on an expression. Conditionals consist of the
word if and a boolean expression, followed by a statement, then possibly followed by
the word else and another statement. If the boolean expression is true, the statement
after the if will be executed; if not, the statement following the else will be executed:
if(aNumber < 0)

 System.out.println("aNumber is negative");

else

 System.out.println("aNumber is not negative");

 189

By convention, the statements are indented to make the code more readable. Typically,
braces are also placed around the statements, which aids readability. More important, any
statements that are between an opening and closing brace are treated as a single statement.
If a programmer wanted not only to detect whether aNumber were negative but also to
change it to positive if it were, the code might look like the following:
if(aNumber < 0) {

 System.out.println("aNumber is negative");

 aNumber = -1 * aNumber;

} else {

 System.out.println("aNumber is not negative");

}

9.6 Evaluating the Same Code Multiple Times

Conditional statements are control structures, in that they can control the flow through a
program. Another kind of control structures are loops, which can perform the same action
multiple times. In other words, Java provides constructs that work like the c:forEach
tag.
The simplest of these constructs is called a while loop, which performs an action as long
as a Boolean expression continues to be true. The following contains all the code needed
for a program that counts from 1 to 10:
int count = 1;

while(count < 11) {

 System.out.println("Count is now " + count);

 count = count + 1;

}

The first line creates a variable and sets it to 1. Java is a very expressive language, so
both variable creation and assignment can be done in one step. Then the while loop will
execute the statements within the braces until count reaches 11. Within the loop, the
value is printed and then incremented by 1.
This loop displays a common pattern: A variable is created and initialized, a loop does an
action until the variable reaches a certain value, and the value is changed within the loop.
Because this combination of steps happens so frequently, another kind of loop, a for loop,

 190

makes it more convenient by doing something for a certain number of times. The
previous code could be rewritten as a for loop, which would look like the following:
for(int count=0;count<11;count++) {

 System.out.println("Count is now " + count);

}

This code does exactly the same thing as the previous example but takes advantage of a
number of shortcuts. First, all the code affecting the variable i has been moved into the
for statement. This includes the creation and initialization, the Boolean expression that
checks whether i has reached 11, and the increment. Another common shortcut is used in
the increment; i++ means exactly the same thing as i = i + 1 ; that is, i is set to one more
than its current value. The body of the loop is now simply the println statement.

9.7 Grouping Code

When writing JSPs, it is often convenient to remove a portion of the page and put it in a
separate file, which is then pulled back into the page with a jsp:include tag. Doing this
has two good reasons. First, the same file may be included by multiple different pages.
Second, it may make the site easier to understand and maintain if pages are split into
logical units.
The same principles apply to Java code. Often, the same code will be needed in multiple
different places, or it may make sense to identify one small portion of the overall task and
move the code that performs that portion off to the side. This is accomplished by defining
the code as a method, such as the max method discussed when looking at expressions.
A method definition looks something like a variable definition. The major difference is
that a method must declare the types of its arguments, as well as the type of the value it
will generate. A method must also define the set of instructions it will perform when it is
used, in order to transform the inputs into the output.
A simple method that takes two integers and adds them together could be written as
int add(int a, int b) {

 return a + b;

}

The declaration states that this method will be called add, that it takes two integers, and
that it returns another integer. The return line states that the two numbers should be
added and that the value should then be given back to the code that called the method.

 191

This method can be used in an expression, such as
add(12,8)

The variables in the method a and b will be given the values 12 and 8, respectively. The
method will then evaluate, add the two numbers, and return 20.
Methods can contain loops, variable declarations, and anything else. The following
example shows a method that adds all the numbers between two other numbers and
returns the sum:
int total(int start, int end) {

 int total = 0;

 for(int i=start;i<=end;i++) {

 total = total + i;

 }

 return total;

}

The variable called total is created and initialized to zero. Then a for loop goes through
all the values between start and end. Note that the test here is <=, meaning less than or
equal to, which ensures that i will reach end. Each time through the loop, the value of i
is added to total. At the end, the value of total is returned.
Methods that do not return a value, such as System.out.println(), have a special
return type: void. What makes void special is that it has no values. An integer can be
any whole number, and a Boolean can be true or false, but nothing can be of type
void.

9.8 Handling Errors

An exception is generated when a Java statement or expression encounters a problem
from which it cannot automatically recover. An example might be an integer expression
that tried to divide by zero. The result of such a computation cannot be stored in Java, so
an exception will be generated; if nothing is done, the program will terminate and report
the error.

 192

Sometimes, this behavior is perfectly OK, but more often a program will want to be able
to detect exceptions and correct the problem. This can be done with a control structure
called try and catch. A typical use might look like this:
try {

 result = value / otherValue;

 System.out.println("The result is " + result);

}catch (ArithmeticException e) {

 System.out.println("The computation could not be done");

}

Here, the computation is in the try clause. If otherValue happens to be zero, an
ArithmeticException will be generated. This will cause the program to jump to the
code in the catch clause, after which the program will proceed to whatever follows. If an
exception is generated, the variable e that appears in this example will hold more
information about the exception, including where exactly it happened. The use of this
variable is beyond the scope of this chapter but can be very handy for figuring out why a
program is not working the way a programmer might expect.

9.9 Modeling a Problem with Objects

Java is often described as an object-oriented language. To see what this term means,
consider a program to play a CD, perhaps "Elyria" by Faith and the Muse. Traditional
programming language would divide this problem into a set of steps that the computer
would have to follow:

1. Search through the shelf for "Elyria."

2. Remove the CD in its case from the shelf.
3. Open the jewel case.
4. Remove the CD.
5. Place the CD in the CD player.
6. Push Play.

This is a perfectly valid way of programming, but an alternative treats the "things" in this
example as more fundamental than the actions. The "things" here are the shelf, the CD
case, the CD itself, and the CD player. Each contains a number of methods. To put it
another way, each object "knows" how to do certain things. The CD player can play a CD,

 193

the CD case can provide the CD, and the shelf can provide a CD in a case. Using this
approach, the program might be rewritten as:

1. CDInCase = shelf.findCD("Elyria");

2. CD = CDInCase.getCD();
3. CDplayer.insert(CD);
4. CDplayer.play()

In this version, an expression, such as shelf.findCD("Elyria"), means "ask the shelf
object to find the CD," and CDplayer.play() means "ask the CD player to play
whatever disc it currently contains."
Often, thinking in terms of objects can make a program much easier to write and maintain.
One advantage of this style of programming is that it often hides many cumbersome
details. This example has no code that determines whether the CD case is a traditional
plastic jewel box or a cardboard case with the CD in a sleeve. The object itself has the
code to support the getCD() method, so the programmer who simply needs to use a CD
case never needs to think about it. Of course, the programmer who created the CD case
object does need to know how this method should work, but once that code is written, it
becomes much easier for others to use.

9.10 Objects in Java

Like everything else in Java, each object has an associated type, called its class. Classes
are created by programmers and contain methods and variables. A very simple Java class
might look like this:
public class SimpleClass {

 private int value;

 public void setValue(int v) {

 value = v;

 }

 public int getValue() {

 return value;

 }

 194

}

In this chapter, this is the first example that is completely valid Java. This code could be
saved to a file, compiled, and then used in a JSP page.
This class contains two methods and one variable, although in class terms, variables are
more often called fields. The methods and fields look much like the examples used
previously, with one addition. Everything in a class has associated with it a level of
protection, which determines what other code is allowed to use it. Something declared
private, for example, may be used only in the class in which it is defined. In this example,
the field value can be accessed only from within the methods that are also defined in this
class. A method or field declared public may be accessed by anyone. Declaring the field
private and the methods public, as the example does, ensures that other classes that use
this class must go through the methods if they wish to access the field. This information
hiding is a very useful technique. In the future, if the value were stored in a database
instead of in a simple variable, the implementations of getValue() and setValue()
would need to change, but any programs that used this class would not. This is how the
CD case class would hide the details of what kind of case it is. As long as the method
names and types stay the same, programmers can change the way they work without
causing all the code that uses the class to break.
Once a class has been defined, it can be used like any other type. Two variables of type
SimpleClass could be created by the statement
SimpleClass a,b;

The variables a and b are in an interesting state after this statement is executed. Clearly,
they both have a type, but they do not as yet have any value.
Before they can be used, they must be given values, which can be done with the new
operator. Classes may be thought of in some sense as blueprints; new takes that blueprint
and constructs an instance of that class, which is an object of the appropriate type. This is
as simple as the following:
a = new SimpleClass();

b = new SimpleClass();

Now a and b will have values and may be used in any number of ways:
a.setValue(12);

b.setValue(14);

System.out.println(a.getValue() * b.getValue());

if(a.getValue() == b.getValue()) {

 System.out.println("The values are identical");

 195

} else {

 System.out.println("The values are different");

}

The conditional at the end illustrates an important point: Each instance has its own copy
of each of the fields defined in a class. If a blueprint contains the plans for a penthouse
apartment and if several buildings are constructed from the blueprint, each will have its
own penthouse.

9.11 Building Objects from Classes

The fact that lines that build new objects look like method calls, complete with
parentheses, is not a coincidence. Classes may contain constructors, methods that
perform special actions when an object is built. If a programmer does not explicitly
provide a constructor, a default one that takes no arguments is provided automatically.
Writing constructors is as easy as writing any other method. A constructor for the
SimpleClass class might initialize value as
public SimpleClass() {

 value = 12;

}

This constructor is declared to be public, meaning that any other class or code can
construct new instances. Now when new instances are constructed with new, value will
start at 12.
Constructors can also take arguments:
public SimpleClass(int startValue) {

 value = startValue;

}

This version of the constructor takes an integer and initializes value to that number. This
constructor could be called with a line of code like
SimpleClass a = new SimpleClass(20);

Constructors can do almost anything a regular method can, such as contain loops and
conditionals, construct other objects, and so on. The only thing constructors cannot do is
return a value, as in a sense, the object being constructed is the return value.

 196

9.12 Sometimes Nothing Is Something

Every object variable, regardless of its class, is allowed to have a special value called
null. In Java, null is a special valve that indicates "nothing at all." Note that this is
different from the empty string, which is a string with no characters, often represented
as "". This distinction is important. In the real world, this is somewhat analogous to the
difference between an empty box and not having a box at all. Null is a convenient value
to use for an object that has not yet been initialized, as a special "flag" indicating a lack of
data, or in many other circumstances. It shows up often in almost all real Java programs.
Also note that null is not of type void.

9.13 Building Classes from Other Classes

Consider a class that represents an animal. Such a class might have fields representing the
animal's gender, life expectancy, weight, preferred environment, and so on.
Now consider a class representing a fish. A fish is a particular kind of animal, so it will
share many of the characteristics of the general animal class. A fish will also have several
fields of its own, such as its swimming speed, preferred water temperature, and so on.
Likewise, a class representing mammals would have several fields in common with the
animal class but probably none with the fish class.
When building a system to deal with all these animals, it would be inefficient to have to
recreate everything in the animal class for each specific kind of animal. Java and other
object-oriented languages get around this problem though inheritance, which allows one
class to inherit the fields and methods of another. Java does this by allowing one class to
extend another. The outline of the class definitions for the animal program follows:
public class Animal {

 public boolean isFemale() {...}

 public double getWeight() {...}

 public void eat(Food someFood) {...}

}

public class Fish extends Animal {

 public double getSpeedInWater() {...}

 197

 public double getWaterTemperature() {...}

}

public class Mammal extends Animal {

 public int getNumberOfLegs() {...}

}

Fish fishy = new Fish();

Mammal aMammal = new Mammal();

After this code has executed, fishy will have all the methods of the Fish class, as well
as the methods of the Animal class, so an expression like fishy.isFemale() will be
valid. Likewise, aMammal will have all the Mammal methods as well as the Animal
methods. However, trying to call aMammal.getSpeedInWater() will result in an error.
This idea may be extended further. It would be possible to define a Cat class that extends
Mammal, and a Housecat class that extends Cat, and so on.
It is possible to cast objects to different types, just as it is possible to cast integers to
doubles and vice versa. An object may always be cast to a class from which its class was
extended, so the following would be legal:
Animal anAnimal = (Animal) fishy;

Animal anotherAnimal = (Animal) aMammal;

This operation is called upcasting because it moves the object "up" into a more general
class. Downcasting, whereby an object is cast into a more specific class, is also possible
if the thing being cast is of the more restrictive type. The following two casts are legal:
(Fish) anAnimal

(Mammal) anotherAnimal

But this would cause a ClassCastException:
(Mammal) anAnimal

9.14 Interfaces

In addition to an animal's taxonomy, it is often useful to know whether an animal is kept
as a pet. Pets may have special fields or methods that untamed animals might not have,
such as a name. This would seem to call for a Pet class, but this leads to a problem. The
Housecat class should extend the Cat class, but it should now also extend the Pet class.

 198

Some languages do allow this sort of multiple inheritance, but Java does not. Java does,
however, provide something almost as good: an interface.
Interfaces are something like classes but contain no code. Instead, an interface will state
only what methods a class will provide. When it provides the methods specified in that
interface, a class is said to implement the interface. The definitions for the Pet interface
and the Cat class follow:
public interface Pet {

 public String getName();

 public void setName(String name);

}

public class Housecat extends Cat implements Pet {

 ...

 public String getName() {...}

 public void setName(String name) {...}

}

The Pet interface specifies two methods but provides no code. The Housecat class
implements this interface, and to do so provides code for these methods.
Because interfaces provide no code, it may not be immediately obvious what purpose
they serve. The answer lies in the way Java treats types. A class that extends another class
and implements an interface, such as Housecat, has two types: Cat and Pet. Thus, a
Housecat may be cast into either of these two types. This provides an easy way to ensure
that code makes sense. For example, a method called buy will purchase a pet. This
method would obviously take an object of type Pet as an argument:
void buy(Pet aPet);

It would be legal to call this method on a Housecat but not on another kind of cat, such
as a snow leopard, that does not implement the Pet interface. This ensures that only pet
animals can ever be purchased.
A class can extend only one other class but may implement any number of interfaces. The
makes Java's type system much more powerful than it would be without interfaces.

9.15 Creating Groups of Classes and Interfaces

 199

In a large program, the sheer number of classes may become overwhelming, not to
mention the several hundred classes that are part of the Java core libraries! To help
manage these classes, Java includes the notion of packages, or collections of classes,
interfaces, and possibly other packages. One such package, java.util, contains a
number of generally useful classes that programmers may use to make their lives easier.
A commonly used class in this package is called Vector, which may be used to store an
arbitrary number of objects of arbitrary types. To declare a variable of this type, it is
necessary simply to include the package name before the class name:
java.util.Vector v = new java.util.Vector();

This can be a little cumbersome when many classes are used from one or more packages.
To simplify this, a program may import one, several, or all the classes from a package,
after which the program will need to specify only the class name. So, the preceding
example could be rewritten as
import java.util.Vector;

Vector v = new Vector();

All the import statements must appear at the top of a file containing a Java program. If it
wanted to use several of the classes from the java.util class, a program could have a
separate import line for each, or it could get them all with
import java.util.*;

The asterisk indicates that all classes in the java.util package should be imported.

9.16 Using Java in JSPs

As mentioned, a JSP turns into a servlet, and a servlet is simply a Java class. This implies
that page authors should be able to embed Java directly in JSPs and that this Java code
will then be automatically carried over into the resulting servlet by the page translator.
This is indeed the case, and the tag that does this is jsp:scriptlet. Any java code
between <jsp:scriptlet> and the closing </jsp:scriptlet> will be put, unchanged,
into the servlet. As a convenience, the same effect can be achieved by enclosing code
within <% ... %> tags.
It is possible to use these tags to write information directly to the page, as in
<% out.println("The time is now: " +

 new java.util.Date()); %>

 200

This is a complete Java statement, including the closing semicolon. The variable out,
within a JSP page, refers to a special output mechanism that writes the enclosed data to
the user or to any custom tag that may be collecting data. This object is the origin of the
name c:out in the standard tag library.
Scriptlets can also introduce control structures:
<% for(int i=0;i<10;i++) { %>

 Hello!<p>

<% } %>

This will send Hello!<p> to the output page ten times. When the servlet is built, the first
line with the for will be injected, complete with the opening brace. Then the hello line
will be added and then the second scriptlet with the closing brace. The result will be a
complete valid Java block.
A great deal of care must be applied when using scriptlets in this fashion; it is all too easy
to miss a closing brace or accidently fail to close the scriptlet in the right place, leading to
difficult-to-find problems. In almost every circumstance, it is preferable to use the
corresponding control tags from the standard libraries.
It is also possible to get and use beans and access session data from within scriptlets. In
fact, it is possible to do anything in a scriplet that can be done from a servlet, precisely
because scriplet code goes directly into the servlet constructed by the page translator.

9.17 Database Access from Java

Although it is possible to do a great deal of useful things by manually entering SQL
commands, such as those from Chapters 6, into an interpreter, the power of a database
increases a thousandfold if its features can be accessed from a programming language.
Traditionally, this was provided by a language-specific and database-specific set of
functions called an application programming interface (API). The API consisted of a set
of functions or classes to expose the basic database functionality. For example, a select
function that would be passed some data structures representing the fields and where
clause might be provided, and it would return another data structure representing the
returned rows.
One of the fundamental goals of Java is to make programming independent of hardware,
operating system, and other external aspects of the environment. This approach was
extended to databases with the introduction of the Java Database Connectivity (JDBC)

 201

classes. These classes protect programmers from specific details about which database is
being used by allowing queries and commands to be written in standard SQL and data to
be retrieved through a standard, unified API. More information about using JDBC, as
well as databases in general, is available in JDBC™ API Tutorial and Reference, Third
Edition, by Maydene Fisher, Jon Ellis, and Jonathan Bruce (Pearson Education, 2003).
The first step in using JDBC is to obtain a JDBC driver for the database being used. A
driver is a collection of classes that acts as the intermediary between the JDBC classes
and the database itself. Of the many kinds of drivers, it is usually preferable, when
possible, to use one that is written completely in Java. Before it can be used, the driver
must be loaded into the program. Some JSP implementations have a property file in
which drivers can be specified, but it is always safe to load the driver manually by
explicitly loading its class, which can be done with a call to Class.forName().
Once a driver has been loaded, a connection to a database can be obtained. Databases in
JDBC are specified by URLs, which tend to look something like Web page URLs. The
URL for HypersonicSQL is jdbc:hsqldb, followed by the name of the database. As all the
examples in this book will use a database called jspbook, the URL will be
jdbc:hsqldb:jspbook.
Many drivers for different databases can be loaded and available at the same time, which
allows a JSP or other Java program to use multiple databases simultaneously. This is
possible because each driver will be configured to handle a particular type of database
URL.
The connection can next be used to obtain a Statement object, the object used to issue
queries. Queries come in two basic flavors: those that return results, such as the select
statement, and those that change the state of the database, such as create, insert, and
delete. Corresponding to this are two methods in the Statement class. The
executeUpdate() method returns an integer that indicates how many rows were affected,
and the executeQuery() method returns a ResultSet object, which describes a returned
set of rows and columns.
The ResultSet class contains methods to iterate through the rows and get the data in
each column. Because Java types do not exactly correspond to SQL types, the methods
that get column data must specify the type of data that is expected. For example, to get
the track length after doing a select on the track table, a program would call
getInt("length"). It would also be possible to use the getObject() method, which
will return the data as an object. The program could then cast this object to an integer,
string, or other appropriate type. The ResultSet can also be used to obtain a

 202

ResultSetMetaData object, which will contain information about the field names, types,
and other information.
Listing 9.1 shows these ideas in action in a simple command line utility to query the CD
database from Chapter 6. This query may be with no arguments:
java com.awl.jspbook.ch09.CdExample

In this case, it will display the names and IDs of all albums in the system. If it is called
with one of these IDs as an argument, it will display all the tracks on the corresponding
album.

Listing 9.1 A Java class that uses JDBC

package com.awl.jspbook.ch09;

import java.sql.*;

public class CdExample {

 public static void main(String argv[]) throws Exception{

 Class.forName("org.hsqldb.jdbcDriver");

 Connection db =

 DriverManager.getConnection(

 "jdbc:hsqldb:jspbook",

 "sa","");

 Statement st = db.createStatement();

 try {

 Integer.parseInt(argv[0]);

 } catch (Exception e) {

 System.err.println("Invalid request");

 System.exit(-1);

 }

 // if the user has asked for detail on an album,

 // provide it

 ResultSet rs;

 203

 if(argv.length > 0) {

 rs = st.executeQuery(

 "SELECT name,length from track " +

 "WHERE albumid = " + argv[0]);

 while (rs.next()) {

 System.out.println(rs.getString("name") +

 " -- " +

 rs.getInt("length"));

 }

 } else {

 // No album requested, give a list

 rs = st.executeQuery("SELECT name,albumid from cd");

 // go through the results

 while (rs.next()) {

 String name = rs.getString("name");

 System.out.println(rs.getInt("albumid") +

 ": " +

 rs.getString("name"));

 }

 }

 rs.close();

 st.close();

 db.close();

 }

}

This example closely follows the pattern described in the preceding paragraphs. First, the
driver class is loaded. The driver is then used to get a Connection, and the Connection
is used to create a Statement.
The class then checks whether details on a specific album have been requested and, if so,
whether the request is a valid integer. This is an important security consideration; without
it, nothing would stop a malicious user from entering a command such as
java com.awl.jspbook.ch09.CdExample "1; delete * from tracks;"

 204

In this case, the query sent to the database would consist of
SELECT name,length from track

WHERE albumid = 1; delete * from tracks;

Some databases will stop processing after the first complete statement, but others will
proceed to the second, wiping out the database. In general, it is a bad idea to pass input
from users directly to the database. Such input should always be verified first.
Assuming that the parameter looks valid, a query is constructed to retrieve the track
listing. This is submitted to the Statement, and a ResultSet is returned. A while loop is
then used to go though each row and get the data from each column.
If the user did not request information on an album, a different query is used to get a list
of all currently available albums. Again, the results are returned as a ResultSet, and a
while loop goes through them.
All the preceding could also be done within a JSP. As noted earlier, however, it is much
easier to use the SQL tag library and even easier to use a bean.

9.18 Summary and Conclusions

This chapter is a long way from being a complete description of the Java language but
should be enough to follow the use of Java code throughout this book. Although JSPs
greatly reduce the need to program in Java, anyone with an interest can learn to program,
and most will find it a very useful skill when writing JSPs as well as for many other
things. Readers are encouraged to pick up one of the books mentioned in the chapter or to
look up a local class on programming in Java.

 205

Chapter 10. Writing Beans

Chapter 9 provided a bridge between the world of JSPs and the world of Java. We can
now cross that bridge to explore those most important of Java classes: beans! This
chapter describes beans from a programmer's perspective and shows how to create beans
and make their properties available to JSPs.

10.1 How Beans Are Implemented

Internally, a bean is an instance of a Java class, although in common terminology, the
class itself may also be referred to as a bean. The most basic kind of bean exposes a
number of properties by following a few simple rules regarding method names. In general,
a bean provides two methods for each property: a method to get the property and one to
set the property, corresponding directly to the jsp:getProperty and jsp:setProperty
tags. Together, these methods are known as accessors. Listing 10.1 shows a very simple
bean with two properties.

Listing 10.1 A simple bean

package com.awl.jspbook.ch10;

public class SimpleBean {

 private int age;

 private String name;

 public int getAge() {return age;}

 public void setAge(int age) {this.age = age;}

 public String getName() {return name;}

 public void setName(String name) {this.name = name;}

}

This bean could be used in a JSP just like any other that has appeared throughout this
book:
<jsp:useBean

 206

 id="myBean"

 class="com.awl.jspbook.ch10.SimpleBean"/>

<c:out value="${myBean.name}"/>

In general, for a property named foo of type type, the get method will return an element
of type and will be called getFoo(). The one exception is that if the type is boolean, the
get method may be called isFoo(). For example, if it needs to keep track of whether it is
ready to perform an action, a bean might have a ready property, and the method could be
called isReady(). Whether getFoo() or isFoo() is used, it is this method that is called
by the jsp:getProperty tag, as well as any tag, such as c:out or c:if, that obtains a
value from a bean. Similarly, the set method will accept an argument of type, will be
called setFoo(), and will be called by jsp:setProperty and c:set tags.
There is no restriction on the type; it may be something simple, such as an integer or
String, or it may be a class or interface type. The type may also be an array of another
type, in which case the property is called an indexed property. In this case, the accessor
methods operate on the whole array, and the bean may wish to provide methods to
operate on the individual elements, as in Listing 10.2.

Listing 10.2 A bean with an array property

package com.awl.jspbook.ch10;

public class ArrayBean {

 private String things[];

 public String[] getThings() {return things;}

 public void setThings(String things[]) {

 this.things = things;

 }

 public String getThings(int i) {return things[i];}

 public void setThings(int i, String thing) {

 things[i] = thing;

 }

}

 207

If an attempt is made to set or get an element with an index larger than the size of the
array, the method will throw an ArrayOutOfBounds exception. This could, and probably
should, be made explicit in the definition of the methods. In either case, any calling class
should be prepared for this exception and should catch and recover appropriately.
Technically, there is no reason why trying to get or set an element outside the array could
not be trapped and handled by the bean, perhaps by creating a larger array and copying
all the existing elements to it. The JavaBean specification states that the only way to
change the size of an array is to use the array version of the set method, passing in a
larger array. Programmers can weigh the value of adhering strictly to the standards
against the need to catch exceptions elsewhere in their programs.
Although it is customary to provide both a set and a get method, doing so is not
required. A property that cannot be set is called a read-only property, and one with no
get method is called write-only. Read-only properties are fairly common; write-only ones
are less so.
Nothing that has been said so far places any restrictions on what these accessor methods
do. The preceding examples simply held their properties in private variables, but as long
as the naming conventions are maintained, any other Java class, including a servlet or JSP,
will be able to discover and access the properties. To illustrate this point, Listing 10.3
shows the DateBean that was used in Listing 3.2.

Listing 10.3 More complex accessor methods

package com.awl.jspbook.ch03;

import java.text.*;

import java.util.*;

import java.io.Serializable;

public class DateBean implements Serializable {

 public DateBean() {}

 SimpleDateFormat sdf;

 public void setFormat(String format) {

 sdf = new SimpleDateFormat(format);

 208

 }

 public String getCurrentTime() {

 return sdf.format(new Date());

 }

}

This example has both a read-only and a write-only property, although there is no
fundamental reason why a getFormat() method could not be provided. On the other
hand, a setDate() method would presumably need to alter time, which will not be
possible until Sun comes out with a "Java 2 time traveler's edition."
This example also contains an explicit constructor, even though that constructor doesn't
do anything. A bean is allowed to provide as many different constructors as the
programmer wants, but it must have one constructor that takes no arguments.

10.2 Automatic Type Conversion

Bean properties can be any type; yet for the most part, JSPs deal with strings. This is
certainly true of form parameters, which are the entities that are most often passed to
beans' set methods. If a bean's set method is expecting an integer and is passed a
String, a runtime exception will occur. In most common cases, this potential problem is
transparently resolved by the jsp:setProperty and c:set tags, which will try to
convert the string to an appropriate type. If the method is expecting an integer, the JSP
system will call Integer.parseInt() to obtain an integer value. If this conversion fails,
perhaps because the user has entered a string that cannot be turned into an integer, the
set method will simply not be called. This can be a problem if some later code expects
that all the parameters have been set successfully.
There are a few ways to handle this. The first and most obvious is for all set methods to
accept strings and do the conversion themselves. However, a more elegant approach
would be to use a controller to mediate between the form and the bean. This will be done
in Chapter 12.

10.3 How Beans Work

 209

All the JSP/bean functionality is built on the ability of one Java class to discover and
invoke methods on another class at runtime. The mechanism that supports this,
introspection, has been built into Java since version 1.1. This extremely powerful
capability is missing from many other object-oriented languages, in which everything
must be known in advance; once a program is built, it may have to be changed
significantly to extend it with new functionality.
Introspection is possible because a lot of information about method names and signatures
is stored in .class files, and certain methods can access and organize this information. An
easy way to see the kinds of information that introspection provides is to use the javap
utility, which is included in the JDK (Java Development Kit). Javap is run from the
command line and is invoked with the name of a class. If it is given SimpleBean from
Listing 10.1, Javap will generate the following output:
Compiled from SimpleBean.java

public synchronized class SimpleBean extends java.lang.Object

 /* ACC_SUPER bit set */

{

 public int getAge();

 public void setAge(int);

 public java.lang.String getName();

 public void setName(java.lang.String);

 public SimpleBean();

}

Although javap does not use introspection to generate this output, the principle is the
same. The utility is able to pull out the names of all the methods and the type of their
arguments and to return values. From this, a person or a program could infer that there is
a property called name that is a string, and so on.
Introspection also provides a mechanism to create a new instance of an object once its
class has been loaded. This mechanism will construct this instance by looking for a
constructor that takes no arguments, which is why the programmer must provide one. As
a convenience, if a class contains no constructors at all, Java will automatically provide
one that takes no arguments and doesn't do anything. However, it is always better to
make such things explicit.
The classes related to introspection are all in the java.beans and java.lang. reflect
packages, and the whole process starts with the java.beans. Introspector class. The
use of these classes is beyond the scope of this book, but readers are encouraged to
peruse the JDK documentation to see how all this is accomplished.

 210

10.4 Bean Serialization

As discussed in Chapter 3, one of the remarkable features of beans is their ability to store
an instance of a bean, perhaps containing some local configuration data, in a file. As
mentioned, this requires no special code in the bean; the class must simply implement the
java.io.Serializable interface. Listing 10.4 shows a bean with a main method that
allows instances to be created, saved, and loaded.

Listing 10.4 A bean that uses serialization

package com.awl.jspbook.ch10;

import java.io.*;

import java.util.*;

import java.text.*;

public class SaveableBean implements Serializable {

 private Date createTime;

 private String message;

 public SaveableBean() {

 setDate(new Date());

 }

 public void setDate(Date createTime) {

 this.createTime = createTime;

 }

 public Date getDate() {return createTime;}

 public void setMessage(String message) {

 this.message = message;

 }

 211

 public String getMessage() {return message;}

 public static void main(String argv[])

 throws Exception

 {

 if (argv[0].equals("-create")) {

 SaveableBean sb = new SaveableBean();

 sb.setMessage(argv[2]);

 ObjectOutputStream out = new ObjectOutputStream(

 new FileOutputStream(argv[1]));

 out.writeObject(sb);

 out.close();

 System.out.println("Bean created and saved!");

 } else if (argv[0].equals("-load")) {

 ObjectInputStream in = new ObjectInputStream(

 new FileInputStream(argv[1]));

 SaveableBean sb = (SaveableBean) in.readObject();

 in.close();

 SimpleDateFormat sdf =

new SimpleDateFormat("hh:mm:ss dd/MM/yy");

 System.out.println("This bean was created at: " +

 sdf.format(sb.getDate()));

 System.out.println("This bean says: " +

 sb.getMessage());

 }

 }

}

The code that does the saving and loading does not need to be in the main() method of
this class, as any class can read or write saved instances of any other class. This is what
makes general bean editors, as well as JSPs, possible.
The Serializable interface does not have any methods; it is enough for a class to
declare itself serializable. However, such classes must adhere to one restriction: All the

 212

members of a serializable class must themselves be serializable, as must their members,
and so on. Most of the classes from the core Java libraries that a bean would contain are
serializable, so this is not a concern very often.
When a bean does need to have a nonserializable member, this member can be declared
transient, and the serialization methods will simply ignore this member when saving or
loading. This may be desirable even when it is not necessary. For example, if a bean will
be used to show the current date, saving its Date object in a file may not make sense.
The obvious downside of transient members is that they will be in some uninitialized
state, probably null, after the bean loads. The serialization mechanism allows a bean to
"know" when it is being unserialized, so that it can take the opportunity to put its
transient members into some consistent state. To do this, it is necessary only for the bean
to have a readObject() method, which might look as follows:
private void readObject(java.io.ObjectInputStream stream)

 throws java.io.IOException, ClassNotFoundException

{

 stream.defaultReadObject();

 ... initialize transient members here ...

}

Likewise, a bean can know when it is being serialized, in case it needs to do some special
processing before it is written. This is done by providing a writeObject() method. See
the page for java.io.Serializable in the JDK documentation for more details.

10.5 Events

So far, beans have been fairly self-contained. When a property is obtained or changed or
when an instance is saved or loaded, the only objects that know about it are the object
that performed the action and the bean itself. Often, it is desirable for beans to
communicate with one another. For example, a JSP might have a bean that is used as a
shopping cart and another bean that handles inventory. When a product is placed in the
cart, the inventory bean should be told that one less item of this product is available for
other shoppers. The JSP could handle this manually, by calling the appropriate methods
on both beans. Besides being inconvenient, this would risk potential problems with
programmers forgetting to call the right methods in the right order. Instead, beans support
numerous mechanisms to communicate directly with one another.

 213

Beans were originally designed as graphic components, such as buttons or menus. In this
role, a bean would be driven by events, such as a user clicking a button. Other beans
would need to listen for a set of events and react appropriately. This leads to an
event-based communication mechanism being incorporated into the bean specification,
and this mechanism turns out to be useful for server-side programs as well. The shopping
cart might generate, or fire, an event when an item is put into it, and the inventory bean
might listen for this event and react by decrementing its supply.
Event programming is almost as easy as property programming and once again is
expressed mostly as a set of naming conventions. First, it is necessary to define a class to
represent the event. Listing 10.5 shows an event that represents putting an item in a
shopping cart.

Listing 10.5 An event

package com.awl.jspbook.ch10;

public class PurchaseEvent extends java.util.EventObject {

 private String itemName;

 public PurchaseEvent(Object source,String itemName)

 {

 super(source);

 this.itemName = itemName;

 }

 public String getItemName() {return itemName;}

}

Once the event has been defined, it is necessary to define an interface that will listen for
events of that type, such as the one in Listing 10.6. Listeners are defined as interfaces,
which allows any class to declare that it will listen for any set of events.

Listing 10.6 A listener interface

package com.awl.jspbook.ch10;

public interface PurchaseListener

 214

 extends java.util.EventListener

{

 public void purchaseMade(PurchaseEvent e);

}

This interface has only one method, but it is allowable for a listener interface to have an
arbitrary number. In a real e-commerce system, the listener might need a second method
to handle a user removing an item from his or her shopping cart. This could go in the
same PurchaseListener interface or in a separate one. In the latter case, the inventory
bean would need to implement both interfaces.
Once the event and listener have been defined, one or more beans can set themselves up
as event sources. This is done by providing two methods, one of which will add a listener;
the other will remove a listener. The method names will include the type of event, which
will allow introspection to figure out automatically what kinds of events a bean may
generate. Listing 10.7 shows a shopping cart bean that generates purchase events.

Listing 10.7 A bean representing a shopping cart

package com.awl.jspbook.ch10;

import java.io.*;

import java.util.*;

public class ShoppingCartBean implements Serializable {

 public String items[];

 public int numItems;

 public Vector purchaseListeners;

 public ShoppingCartBean() {

 purchaseListeners = new Vector();

 items = new String[50];

 numItems = 0;

 }

 public void setItem(String item) {

 items[numItems++] = item;

 215

 firePurchaseEvent(item);

 }

 private void firePurchaseEvent(String item) {

 PurchaseEvent pe = new PurchaseEvent(this,item);

 Enumeration e = purchaseListeners.elements();

 while(e.hasMoreElements()) {

 ((PurchaseListener) e.nextElement()).purchaseMade(pe);

 }

 }

 public void addPurchaseListener(PurchaseListener p) {

 purchaseListeners.addElement(p);

 }

 public void removePurchaseListener(PurchaseListener p) {

 purchaseListeners.removeElement(p);

 }

}

The names addPurchaseListener and removePurchaseListener are enough for the
system to figure out that there must be a PurchaseEvent class and a PurchaseListener
interface, and this information could then be used in a graphic bean builder to hook two
or more beans together.
Finally, Listing 10.8 shows the inventory bean, which can handle purchase events.

Listing 10.8 A bean that represents an inventory and handles purchase
events

package com.awl.jspbook.ch10;

import java.io.*;

import java.util.*;

public class InventoryBean

 implements Serializable,PurchaseListener

{

 216

 private static final Integer ONE = new Integer(1);

 private Hashtable inventory = new Hashtable();

 public void addInventory(String name) {

 Integer count = (Integer) inventory.get(name);

 if(count == null) {

 inventory.put(name,ONE);

 } else {

 inventory.put(name,

 new Integer(count.intValue() + 1));

 }

 }

 public void removeInventory(String name)

 {

 Integer count = (Integer) inventory.get(name);

 if(count == null) {

 return;

 } else if(count.equals(ONE)) {

 inventory.remove(name);

 } else {

 inventory.put(name,

 new Integer(count.intValue() - 1));

 }

 }

 public void purchaseMade(PurchaseEvent pe) {

 removeInventory(pe.getItemName());

 }

}

As expected, this class implements the PurchaseListener interface and does the
obvious thing when it receives a purchase event.
Even more would need to be done in order to hook the shopping cart to the inventory. In
particular, the shopping cart will presumably live in one or more session scopes, and the
inventory will reside in the application scope. These beans must be able to "discover"

 217

each other. Numerous other details remain to be filled in, such as how the inventory
should respond if it receives a request for an item that is out of stock.

10.6 Special Events

In the bean sense, special events refer to a couple of event types that are of particular
interest to bean authors working with JSPs. The first is called PropertyChange Event. A
bean may fire one of these any time one of its properties changes, in order to alert other
beans to the change. A property that generates a PropertyChangeEvent when it is
modified is called a bound property.
A bean can also refuse to set a property to a new value, by generating a VetoEvent. This
is typically thrown when another object tries to set a property to an unacceptable value.
The inventory bean might throw this exception if someone tried to change the number of
items it is holding to ?. A property that can generate a VetoEvent is known as a
constrained property.
These two events are defined in the bean specification. The JSP specification defines an
additional event, HttpSessionBindingEvent, which can be used to notify a bean that it
has been added to or removed from a session scope. Recall that a session will end after a
user has not come back to the site after a certain length of time. When this happens, the
session will be deleted to make room in memory for other sessions, and any data in the
session will be lost. However, before the session is killed, all data objects connected to it
will be sent an HttpSessionBindingEvent, which gives these data objects a chance to
save data to a database or file or to do any other cleanup. Listing 10.9 shows a bean that
saves itself when the session shuts down.

Listing 10.9 A bean that listens for session binding events

package com.awl.jspbook.ch10;

import java.io.*;

import java.util.*;

import javax.servlet.http.*;

public class SessionBean

 implements Serializable, HttpSessionBindingListener

 218

{

 private String fileName;

 private String message;

 public void setFileName(String fileName) {

 this.fileName = fileName;

 }

 public String getFileName() {return fileName;}

 public void setMessage(String message) {

 this.message = message;

 }

 public String getMessage() {return message;}

 public void valueBound(HttpSessionBindingEvent b) {

 }

 public void valueUnbound(HttpSessionBindingEvent b) {

 save();

 }

 public void save() {

 try {

 ObjectOutputStream out = new ObjectOutputStream(

 new FileOutputStream(fileName));

 out.writeObject(this);

 out.close();

 } catch (Exception e) {}

 }

 public static void main(String argv[]) {

 SessionBean sb = new SessionBean();

 sb.setFileName(argv[0]);

 sb.setMessage(argv[1]);

 219

 sb.save();

 }

}

An instance of this bean may be created and saved in a file with its main() method. A
JSP may then use this serialized bean and change its message property. Some time later,
when the session has expired, the bean will save itself, including the current message
string, back into the file. Note that there is no guarantee when this will happen. The JSP
engine may expire the session after a fixed timeout period, when it needs more memory,
or perhaps not until the Web server is shut down.

10.7 Bean Errors

The most common problem when using a bean within a JSP is that introspection tends to
mask programmer exceptions, making it difficult to see where the problem really is. If a
set method throws an exception, the JSP engine will likely print out something cryptic:
java.lang.reflect.InvocationTargetException

 at com.sun.jsp.runtime.JspRuntimeLibrary.introspecthelper

 at com.sun.jsp.runtime.JspRuntimeLibrary.introspect

 ... etc ...

The easiest way to discover the real problem is to put the bodies of all the set and get
methods in try/catch blocks and have the catch clause dump the exception to
System.err.
Although this will cause useful debugging information to be generated, it will leave the
bean in an inconsistent state. There is no hard-and-fast rule about what to do in such a
situation. The set method could leave the property in its last known state, or it could be
reset to a sensible default. Another possibility is to throw the original exception. The user
will get an error page, but this might be preferable to getting weird results. Perhaps in a
future version of the JSP specification, the JSP engine will listen for VetoEvents, in
which case a method could fire such an event on receiving an exception.
Another potential problem concerns serialized instances. Consider what would happen if
a class contained a member of type int, a serialized instance of this class were created,
and then the programmer rewrote the class to make the member a String. Even if the
deserialization process were able to build something from this, the result would likely not
be meaningful.

 220

To prevent this problem, all classes and serialized instances have an ID called the
serialVersionUID. When an object is deserialized, the ID of the instance is checked
against that of the class; if they do not match, an exception will be thrown. The output
from the JSP engine in that case would look something like this:
java.io.InvalidClassException: SaveableBean;

Local class not compatible:

stream classdesc serialVersionUID=8221280906864288240

local class serialVersionUID=-8806858158408665433

If a field has changed types, not much can be done about an error like this, and the only
option is to recreate all the serialized instances with the new class. However, some
changes are more benign. For example, adding a new field or method should not affect
the ability to load old data, as long as it is OK to leave the new fields in an uninitialized
state after loading.
In most classes, the serial version (UID) value is not implicit but rather is computed
based on properties of the class. When the class structure changes, so will this value.
However, if old serialized instances should still work with a new class, an explicit form
of the ID can be provided to make sure the IDs match. In the preceding case, it would be
necessary simply to tell the class to use the same ID as the stream found, which could be
done by adding the following line to the class:
private static final long

 serialVersionUID=8221280906864288240L;

If an ID has changed because new members were added to the class, the new version of
the bean could be given a readObject() method to initialize the new fields after loading.

10.8 Summary and Conclusions

Beans are nothing more than Java classes that adhere to certain naming conventions.
Beans make properties available by providing get and set methods, which obtain and
modify the property, respectively. Beans may also be serializable, meaning that they can
write their data out to disk and restore it later. Finally, beans may generate or listen to
events, and such events can be used to tie beans together. Of particular interest is the
HttpSessionBindingListener interface, which a bean can use to get notified when a
bean in a session scope is about to be retired.

 221

Anyone who can write a Java class can write beans that can be used in JSPs.
Correspondingly, almost any Java class can be turned into a bean by thinking about what
the class does in terms of properties and exporting those properties with appropriately
named methods.

 222

Chapter 11. Servlets

This book has made many references to servlets. In particular, it has been repeatedly
noted that a JSP file is turned into a servlet at translation time and that the resulting
servlet is run at request time. This means that JSPs and servlets are the same thing.
As discussed in Chapter 1, a servlet is a small class that may be thought of as a dynamic
extension to a Web server or application server. CGIs, by contrast, are external programs
started by the Web server. This change from external to internal extensions has a number
of advantages, chief of which is performance. Because a servlet is loaded only once, the
first time it is needed and subsequently, it resides in the same Java virtual machine (JVM)
as the Web server or application server; thus, the large overhead of starting a new
program for each request is avoided.
This chapter is not meant to be a comprehensive study of servlets, a topic that could fill a
book itself. See, for example, Enterprise Java™ Servlets by Jeff M. Genender (Pearson
Education, 2002), which offers a much more detailed look at servlets and the servlet API.
As JSPs ultimately are servlets, it makes sense for JSP authors to know at least a little
about what is going on behind the scenes, if for no other reason than to appreciate how
much easier it is to write JSPs!

11.1 The Servlet Life Cycle

A CGI has a pretty simple life. When a user makes a request, the Web server runs the
CGI program. For a Perl program, this means starting up the Perl interpreter, which then
reads the file comprising the program and starts executing instructions, beginning at the
top of the file and moving down. For a CGI written in C or C++, the program starts at its
main() method, which then may call other procedures, create classes, and so on. In either
case, the Web server communicates all the information about the request through a set of
variables and data sent to the program's input. The program generates a response by
printing some headers containing the result's attributes, such as type and length, followed
by the result itself. The CGI program then exits, vanishing from system memory as if it
had never existed. If the same CGI has many requests, either all at once or one after the
other, a new instance of the CGI will be created each time.

 223

In principle, servlets could follow the same pattern. A servlet could consist of nothing
more than a class with a service() method to handle a request. Each time a request
came in, a new instance of the servlet would be created, and its service() method would
be called. Inside this method, the class could make calls to get request information, and it
could return results by printing the headers and the resulting HTML page, just as a CGI
does.
This process would save the overhead of loading the class each time but is still very
inefficient. The servlet API can best be understood by starting from this model and seeing
what improvements could be made.
First, it is unnecessary to create a new instance for every request. The Web server needs
to create only a single instance and can then call this instance's service() method for
each request. For this to be possible, the service() method could not use any global data
or write to a common output stream. If global data were used to hold the request, input
would be jumbled if two or more requests came in at the same time. Likewise, if a single
output stream were used, the output of multiple simultaneous requests would be
intermingled.
The solution to this problem is to have the Web server pass in unique instances of objects
representing the request and response each time it calls the service() method. This
might seem even worse than constructing a new servlet, but in fact doing it this way has
advantages. For one thing, the Web server would likely need to do this work anyway, as
different requests must be kept isolated from one another. Second, the request and
response objects will typically be much simpler than the servlet object, so it will be easier
to build them. By the way, if the notion of a request object sounds familiar, it should.
This is the same object from which information about the request was obtained in Listing
4.7 and which contains data that is in the request scope.
Now that the servlet will be constructed only once, a further optimization can be made.
Consider a CGI that uses a database. Each time it is started, it will need to reestablish a
connection to the database, because a CGI has no way to hold onto a connection between
the time it is shut down and the time it starts up again. However, as a servlet never exits,
it needs to open this connection only once. The same is true for many other kinds of
initializations, such as building some auxiliary classes or setting some variables to known
defaults. This means that all the initialization code can be taken out of the service()
method and put into a separate method: init(). The Web server will call the init()
method once when the servlet is first loaded, and after that it may call the service()
method multiple times.

 224

If servlets lasted forever, those two methods would be the only ones needed. However, a
servlet may be retired in a number of ways. Sooner or later, the Web server will need to
shut down; when it does, it should give all its servlets a chance to clean up after
themselves, close database connections, and so on. A servlet might also be replaced by a
newer version, in which case the old version should also be given the opportunity to close
any resources it has opened. Servlets handle this possibility by supporting a destroy()
method, which will be called by the Web server when it knows that the servlet will not be
asked to service any more requests. The servlet then has the chance to undo anything it
did in the init() method.
These three methods define the servlet life cycle, which is illustrated in Figure 11.1.

Figure 11.1. The servlet life cycle.

 225

11.2 The Servlet Class Hierarchy

The most basic servlet definitions live in the javax.servlet package and consist of a
number of interfaces.

• The ServletContext interface provides a means for servlets to communicate
with the surrounding Web server or application server. This communication can
take the form of requests for system resources, reports written by the servlet to a
log file, and so on. Indirectly, the ServletContext also allows servlets to
communicate with one another, primarily by sending requests to other pages. This
is how the jsp:forward and jsp:include tags are implemented, as will be seen
shortly. ServletContext is implemented by people writing the Web or
application server; servlet authors seldom need to use it directly and never need to
extend it.

• The ServletConfig interface provides a mechanism for the web Server to pass
initialization information to the servlet's init() method. This information takes
the form of pairs of names and values, which are stored in a configuration file
called web.xml, which is examined more closely in Appendix B. If a servlet is
going to open a connection to a database, it would not make sense to hard-code
the name of the driver class and the database URL in the servlet's code. Doing so
would make the servlet more difficult to change if a new database were ever
installed. Instead, this information could be sent to the servlet as parameters, and
the servlet would use the ServletConfig to retrieve these values and act
accordingly. Like ServletContext, this interface is implemented by the authors
of the Web server.

• The Servlet interface defines the three life-cycle methods?TT>init(), service(),

and destory()�as well as a handful of others.

• The ServletRequest and ServletResponse interfaces encapsulate a request to
the servlet and a response from the servlet, respectively. Objects that implement
these interfaces will be passed to the servlet's service() method. Code within
this method can then use the ServletRequest to determine information about the
request, such as its origin, the exact data being requested, and so on. Similarly
code in the service() method can then use the ServletResponse to return

 226

information about the response, as well as the data, such as an HTML page, that
comprises the response itself.

The javax.servlet package also defines three other classes. Two are the
ServletInputStream and ServletOutputStream classes, which servlets use to read and
write data, respectively. The third class, GenericServlet, implements both the Servlet
and ServletConfig interfaces and forms the basis for most real servlets.
Note that so far, none of this has been specific to the Web or HTTP (HyperText Transfer
Protocol). This is deliberate. Many kinds of servers are on the Web, including FTP (file
transfer protocol), mail, chat servers, games, and so on. Many of these servers will want
the same kind of dynamic extensibility that Web servers have, so it makes sense for each
of these servers to have a corresponding servlet. A multiuser dungeon game might have a
"character" servlet and a "weapon" servlet; as new kinds of characters and weapons are
introduced, they could be written as servlets and loaded as needed.
The Web-specific versions of the servlet classes are included in a package called
javax.servlet.http. The heart of this package is the HttpServlet class, which
extends GenericServlet. This class's service() method takes HttpServletRequest
and HttpServletResponse objects, instead of the generic versions from the
javax.servlet package. These variations contain a great deal of HTTP-specific
information, such as cookies, remote user names, authentication schemes, and so on.
The HttpServlet class also has provided a built-in service() method, which looks at
what kind of request has been received and calls an appropriate method to handle it. For
example, if the request were an HTTP GET, the doGet() method will be called. There is
also a doPost() method, doDelete(), and so on. This frees a servlet writer from
worrying about handing specific requests properly. A servlet writer will simply override
the appropriate do method or methods; if any other kind of request comes in, the servlet
will report that it does not handle that kind of request.
Listing 11.1 shows a simple servlet that shows these methods in use.

Listing 11.1 A simple servlet

package com.awl.jspbook.ch11;

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

 227

public class HelloServlet extends HttpServlet {

 private String message;

 public void init(ServletConfig sc)

 throws ServletException

 {

 super.init(sc);

 message = sc.getInitParameter("message");

 if (message == null)

 message = "Hello, world!";

 }

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException,ServletException

 {

 handle(req,res);

 }

 public void doPost(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException,ServletException

 {

 handle(req,res);

 }

 public void handle(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException,ServletException

 {

 res.setStatus(res.SC_OK);

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 228

 out.println("<HTML>");

 out.println("<HEAD><TITLE>A servlet</TITLE></HEAD>");

 out.println("<BODY>");

 out.println(message);

 out.println("</BODY>");

 out.println("</HTML>");

 out.close();

 }

 public void destroy() {

 return;

 }

}

After the servlet is loaded, its init() method will be called. This method will look for a
parameter to display as the response; if no such parameter is provided, a default will be
used. Note that the init() method starts by calling super.init(), which will ensure
that all the behind-the-scenes setup is done properly.
This servlet does not override the service() method, so the default one will be used.
Consequently, any GET or POST methods will be handled by the corresponding method,
and any other kind of request will result in an error. In this case, the response to both GET
and POST requests will be identical, so both of these methods call handle(), which is
responsible for handing the request.
First, handle() sets some information about the response it is returning. In particular, it
specifies that the request succeeded by setting the status code to SC_OK, and it specifies
that HTML data will be returned. Then handle() obtains a PrintWriter object, which it
uses to print the page. Even on a page as simple as this one, all those print statements
can be a burden and a hassle, which is one reason it is so much easier to write JSPs.
The fact that out was used as the name of the PrintWriter is no mere accident! The
name was chosen because this object is basically the same kind as used by the c:out tag
to send the value of an expression to the page, although this will have to be clarified a
little when discussing tags in more detail in the next chapter.
This servlet has nothing to clean up when it is decommissioned, so the destroy()
method simply returns. In fact, this method is not needed here at all but is included for
the sake of completeness.

 229

Two exceptions are declared by the methods in this servlet. The IOException is a
general exception thrown whenever there is a problem with the input or output of data,
which could happen if the user clicks the browser stop button before receiving the full
page or if a network problem occurs.
The other exception, ServletException, provides a means for servlet authors to indicate
that the servlet has run into a problem while processing, although this servlet never
actually throws one. However, if the servlet author decided that failing to provide a
message was a critical error, init() could throw a ServletException instead of setting
message to a default value. This exception could be constructed with a message
describing the problem, and this message would end up in a log file.
A servlet can provide additional information by throwing a subclass of
ServletException: UnavailableException. The UnavailableException comes in
two flavors: permanent and temporary. The permanent version tells the Web server that
this servlet cannot continue, and the Web server will consequently never call the servlet's
init() or service() methods again. On the other hand, if a servlet throws the
temporary version, it may include a time interval in seconds. The Web server will wait
for the specified period of time and will then call the method that threw the exception.
This is useful if a servlet discovers that a resource it needs, such as a database, has
become unavailable. The chances are good that the database will be restarted shortly, at
which point the servlet can reconnect and continue working. In the meantime, however,
the servlet need not try to handle requests, which will only put a lot of unnecessary
burden on the network.

11.2.1 More about Requests

In the broadest sense, the HttpServletRequest interface defines everything there is to
know about the request. Some of this information is fairly straightforward, such as the
name of the machine from which the request was issued or the browser that is being used.
However, a few kinds of information warrant further discussion.
One important kind of data provided by the request object is the list of cookies sent by the
browser. Cookies are small pieces of data that a Web site can send to a browser, which
the browser is then expected to send back to the Web site on subsequent requests.
Cookies have a number of properties, including their domain, which indicates to which
systems the cookie should be sent; their path, which indicates for which URLs within that
domain the cookie should be sent; and a maximum age, which indicates how long the

 230

cookie has to live. Once the time has passed, the cookie will no longer be sent back to the
Web site and will probably be deleted from the browser's cookie repository.
In the servlet APIs, cookies are represented by the javax.servlet.http class, which contains
all the preceding information and possibly additional fields. The list of cookies may be
obtained from the request object by calling its getCookies() method, which will return
an array of all the cookies the browser sent with the current request.
Internally, JSPs and servlets also use a special cookie to keep track of sessions. HTTP is
by nature a stateless protocol, meaning that no information is preserved between requests.
In order to implement sessions, all the information about each session is stored
somewhere in memory, and a special key is used to look up the data relevant to a
particular user's session. This key is passed in a cookie, so each time the user makes a
request, the key will be sent along, and the JSP engine can then retrieve this cookie and
use it to access the relevant session data.
Some users distrust cookies, so the servlet API provides an alternative way to pass the
key back and forth. This is done by rewriting each URL to include the key. For example,
a user without cookies who tries to access http://somesite.com/apage.jsp might be
redirected to something like
http://somesite.com/To1010mC0673157862957708/apage.jsp, where the additional
information contains the session key. Any links on the page should be relative, such
as .../something/another page.jsp, so that when the user follows the link, the portion of the
URL that contains the session key will be preserved.
The request object can inform a servlet or JSP whether the user's session is stored in a
cookie or a URL, by using two methods called isRequestedSessionIdFrom-Cookie()
and isRequestedSessionIdFromURL() methods. The request can also provide access to
the session itself, which we will discuss further when we look at using scopes from
servlets.
Listing 11.2 shows a servlet that prints all its cookies, as well as some information about
the current session.

Listing 11.2 A servlet that gets cookie and session information

package com.awl.jspbook.ch11;

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

 231

public class CookieServlet extends HttpServlet {

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException,ServletException

{

 handle(req,res);

}

public void doPost(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException,ServletException

{

 handle(req,res);

}

public void handle(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException,ServletException

{

 res.setStatus(res.SC_OK);

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML>");

 out.println("<HEAD><TITLE>Cookies</TITLE></HEAD>");

 out.println("<BODY>");

 Cookie cookies[] = req.getCookies();

 if(cookies == null || cookies.length == 0) {

 out.println("You have no cookies");

 } else {

 232

 out.println("<TABLE>");

 out.println("<TR>");

 out.println("<TH>Name</TH>");

 out.println("<TH>Domain</TH>");

 out.println("<TH>Path</TH>");

 out.println("<TH>Value</TH>");

 out.println("<TH>Max Age</TH>");

 out.println("</TR>");

 for(int i=0;i<cookies.length;i++) {

out.println("<TR>");

 out.println("<TD>" + cookies[i].getName() + "</TD>");

 out.println("<TD>" + cookies[i].getDomain() + "</TD>");

 out.println("<TD>" + cookies[i].getPath() + "</TD>");

 out.println("<TD>" + cookies[i].getValue() + "</TD>");

 out.println("<TD>" + cookies[i].getMaxAge() + "</TD>");

out.println("</TR>");

 }

 }

 out.println("</TABLE>");

 if(req.isRequestedSessionIdValid()) {

 if(req.isRequestedSessionIdFromCookie()) {

out.println("This session is from a cookie");

 }

 if(req.isRequestedSessionIdFromURL()) {

out.println("This session is from the URL");

 }

 } else {

 out.println("There is no session associated ");

 out.println("with this request");

 }

 233

 out.println("</BODY>");

 out.println("</HTML>");

 out.close();

 }

}

Structurally, this servlet closely resembles the one from Listing 11.1; the major difference
is that here, the servlet has no init() or destroy() methods. Inside the handle()
method, the cookies are obtained from the request object and printed. The servlet then
checks for a current valid session and, if so, determines whether it came from a cookie or
was written into the URL.
When this example is first run, the user will not have any cookies, so the output will be
rather sparse. The output can be made more interesting by creating a servlet that will
issue cookies, which will be done in the next section.

11.2.2 More about Responses

The HttpServletResponse interface is in some ways the mirror image of the request
interface. The request interface has information about the request that the servlet is meant
to read but cannot change. The response object is where the servlet can write information
about the data it will send back. Whereas the majority of the methods in the request
interface start with get, indicating that they get a value, many of the important methods
in the response start with set, indicating that they change a property. Note how even
these interfaces adhere to the usual naming conventions for beans.
Two of these set methods have already been encountered: one that sets the status code
and one that sets the content type. The status code indicates the status of the response.
Ideally, this will usually be SC_OK, indicating that the request succeeded normally and
that the page data will follow. Other codes include SC_INTERNAL_SERVER_ERROR, which
indicates a problem internal to the Web server. This is the code that results in "error 500"
messages such as the one in Figure 2.1. A complete list of codes supported by HTTP is
included in the HttpServletResponse interface.
The content type indicates what kind of data will be sent back to the user. The page
directive uses this same mechanism, as was done in Chapter 8 to specify that some
examples were returning data of type text/xml. It is now clear how this directive works;
it simply generates a setContentType() call in the resulting servlet, just as has been

 234

done in Listing 11.2. A servlet could also send out plain text by setting this type to
text/plain or even generate an image by setting this to something like image/bmp.
In addition to these two methods, a servlet can indicate how much data is coming back by
using the setContentLength() method. This attribute is set in relatively few pages these
days, but whenever possible, its use is encouraged, as it can help the browser know when
it can close the connection to the server and stop showing the throbbing "N" or spinning
"e."
The request object can also add new cookies by calling the addCookie() method. This
method can take as an argument a brand new cookie, or an existing cookie can be
obtained from the request, modified, and then sent back to the user.
The other important method in the request interface is getWriter(), which returns a
PrintWriter, which the servlet then uses to send its data. Normally, this is the preferred
way to send data back to the user, as the PrintWriter class is convenient to use, as well
as automatically handling some internationalization issues. If it is going to be sending
back binary data, the servlet may instead wish to use the ServletOutputStream class,
which can be obtained by calling getOutputStream(). This class contains a
write(byte[]) method, which is ideal for sending bytes of data that should not be
interpreted or altered in any way by either the browser or the server.
It is important to note that all the header information, such as the content type and length,
must reach the browser before any of the data. This makes sense, as the browser will not
know what to do with this data until it receives all the header information. Under most
circumstances, therefore, all the response's set methods must be called before anything is
printed to either ServletOutputStream or PrintWriter.
To be completely accurate, the output from the servlet is buffered, meaning that it is held
in memory until a certain amount has accumulated, and then it is all sent to the user at
once. This is done for the sake of efficiency, as sending data across the network has a lot
of overhead and is best done as infrequently as possible. This means that new headers can
be set until the buffered content is transmitted, which can be determined with the
isCommitted() method, which returns true if any data has been sent to the user. To be
on the safe side, though, it is strongly recommended that all headers be sent before
starting to send any data.
Listing 11.3 shows how a servlet can use the HttpServletResponse to add a new cookie
and set a variety of other information.

Listing 11.3 A servlet that sets cookies

 235

package com.awl.jspbook.ch11;

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class ResponseServlet extends HttpServlet {

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException,ServletException

 {

 handle(req,res);

 }

 public void doPost(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException,ServletException

 {

 handle(req,res);

 }

 public void handle(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException,ServletException

 {

 StringBuffer text = new StringBuffer();

 String name = req.getParameter("name");

 String value = req.getParameter("value");

 if(name == null) {

 name = "Acookie";

 }

 if(value == null) {

 236

 value = "AcookieValue";

 }

 text.append("<HTML>");

 text.append("<HEAD><TITLE>A servlet</TITLE></HEAD>");

 text.append("<BODY>");

 text.append("<P>Added a cookie whose name is: ");

 text.append(name);

 text.append(" with a value of: ");

 text.append(value);

 text.append("</P>");

 text.append("<FORM ACTION=\"response\" METHOD=\"GET\">");

 text.append("<P>Name: ");

 text.append("<INPUT TYPE=\"TEXT\" NAME=\"name\"></P>");

 text.append("<P>Value: ");

 text.append("<INPUT TYPE=\"TEXT\" NAME=\"value\"></P>");

 text.append("<P><INPUT TYPE=\"SUBMIT\"></P>");

 text.append("</FORM>");

 text.append("</BODY>");

 text.append("</HTML>");

 String html = text.toString();

 res.setStatus(res.SC_OK);

 res.setContentType("text/html");

 res.setContentLength(html.length());

 Cookie cookie = new Cookie(name,value);

 cookie.setMaxAge((int) System.currentTimeMillis() +

 1000 * 60 * 10);

 res.addCookie(cookie);

 PrintWriter out = res.getWriter();

 out.print(html);

 out.close();

}

 237

}

The cookie creation itself is straightforward; the cookie is simply constructed and sent to
the user with the addCookie() method. The cookie is set to last for 10 minutes by setting
its maximum age to the current time plus 10 minutes, expressed in milliseconds.
This servlet also sets the content length. In order to do this, the servlet must buffer the
output internally, which it does by using the StringBuffer. The code would have been a
little cleaner if it had used a String and the + operator, but the StringBuffer class is
generally much more efficient.[1]

[1] Buffering data internally is the only way to determine the content length reliably, but it is grossly inefficient even

when a StringBuffer is used. This is why so few pages bother with the content length at all.

This servlet also illustrates the use of the getParamterValues() method, which contains
information about all the data that a form has sent to the servlet. This method is also used
behind the scenes by JSPs, as this is what populates the param map often used in
expressions.

11.2.3 Convenience Methods

Most of the time, servlets will send out formatted HTML, in which case they will set the
status to SC_OK. However, a servlet might generate two other common kinds of responses:
errors and redirects. Error pages are all too common; they contain a numeric code
indicating the kind of error and, usually, a short, cryptic message telling the user that
something went wrong. Rather then setting the status to the appropriate code and printing
the error text, a servlet can simply use the sendError() method. This message takes an
integer representing the error code and a string to use as the error text. This text will be
enclosed by <body></body> tags, which makes things a little easier for the servlet
programmer. A typical use might look something like
res.sendError(res.SC_INTERNAL_SERVER_ERROR,

 "Yikes, something went awry! Please check back later.");

Redirects tell a browser that the page for which it has asked has moved to a new URL;
the browser will respond by asking the appropriate server for the new URL. This
technique is common for preventing links from getting stale, but it is also used to send a
user to a different page, based on a certain condition. For example, a user who tries to
access a page without having the permission to read it can be sent to a page explaining
what to do in order to obtain that permission.

 238

HttpServletResponse provides a method, sendRedirect(), to make redirects easier to
use. It takes a single string as an argument, which should contain the URL to which the
user should be sent. Unlike the sendError() method sendRedirect() does not takes a
string describing why the user is being sent elsewhere, as in practice, the user will never
have a chance to read this message before the browser loads the new page. Further,
sendRedirect() does not need a status argument, as the status is assumed to be
SC_MOVED_TEMPORARILY. A typical use for this method would look like this:
res.sendRedirect("http://www.brunching.com");

The URL should be complete and cannot be relative, unlike an HREF. Most browsers will
correctly handle a relative redirect, but this is not part of the official HTTP specification.

11.3 Servlet Events

Often, developers may wish to take certain special actions at various points during the
life cycle of either a servlet or the application as a whole. Some of these actions can be
handled by simply adding code to the appropriate life-cycle method, but other methods
are not available to the general programmer. One common case is session handling. If an
application could determine when a session was being expired, it would be possible to
move data from the session into a database before it disappeared forever. Likewise,
knowledge of when a session was being created would make it possible to move data
from the database into the session. The result would be sessions that are effectively
immortal, providing a seamless experience for the user.
This could be achieved in many ways, but a natural mechanism is already provided by the
JavaBean specification by way of events and listeners, as discussed in the preceding
chapter. The idea is that the servlet engine will fire off an event representing various
activities, and programmers can build listeners to capture and act on these events.
Conceptually, this works just like any other bean event; it is simply a matter of
implementing the right listener interfaces and working with the corresponding events. An
outline of the session backup listener is shown in Listing 11.4.

Listing 11.4 The outline of a session listener

package com.awl.jspbook.ch11;

 239

import javax.servlet.http.*;

public class BackupListener

 implements HttpSessionAttributeListener

{

 public void

 sessionCreated(HttpSessionEvent event)

 {

 HttpSession session = event.getSession();

 // ... load the session from the database ...

 }

 public void

 sessionDestroyed(HttpSessionEvent event)

 {

 HttpSession session = event.getSession();

 // ... back up the session to the database ...

 }

 public void

 attributeAdded(HttpSessionBindingEvent event)

 {

 // ... It may not be necessary to do anything

 for this

 // event, but the interface requires it be provided

 }

 public void

 attributeRemoved(HttpSessionBindingEvent event)

 {

 // ... It may not be necessary to do anything

 for this

 // event, but the interface requires it be provided

 }

 240

 public void

 attributeReplaced(HttpSessionBindingEvent event)

 {

 // ... It may not be necessary to do anything

 for this

 // event, but the interface requires it be provided

 }

}

Corresponding interfaces can capture the creation and destruction of a servletContext,
as well as the addition and removal of attributes to a servletContext or session. See the
servlet specification for details.

11.4 Forwarding and Including Requests

Many examples throughout this book have sent a user to another page, using a technique
very different from the redirects. The jsp:forward tag is sort of a "server-side" redirect,
as it instructs the server to generate a different page rather than tells the browser to load a
new URL. This is related to the jsp:include tag, which includes the body of one JSP,
HTML page, or servlet in another. There is no corresponding way to do this on the client
side, at least not one that works on all browsers.
Both of these tags are handled internally by the RequestDispatcher class, which, as the
name implies, can dispatch a request to another resource in the system. It does this
through two methods called, appropriately enough, forward() and include(). Both of
these methods take as arguments the request and response objects that the calling servlet
was passed. As might be expected, these objects will end up getting passed to the target
servlet's service() method. Listing 4.14 showed a JSP that used a jsp:forward tag and
input from the user to send the user one of three pages. Listing 11.5 shows how a servlet
would accomplish the same thing.

Listing 11.5 A servlet that forwards requests

package com.awl.jspbook.ch11;

import javax.servlet.*;

 241

import javax.servlet.http.*;

import java.io.*;

public class DispatchServlet extends HttpServlet {

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException,ServletException

 {

 ServletContext sc = getServletContext();

 RequestDispatcher rd;

 String which = req.getParameter("which");

 if(which != null) {

 if(which.equals("red")) {

rd = sc.getRequestDispatcher("/chapter11/red.jsp");

rd.forward(req,res);

 } else if(which.equals("green")) {

rd = sc.getRequestDispatcher("/chapter11/green.jsp");

rd.forward(req,res);

 } else if(which.equals("blue")) {

rd = sc.getRequestDispatcher("/chapter11/blue.jsp");

rd.forward(req,res);

 } else {

res.sendError(res.SC_INTERNAL_SERVER_ERROR,

 "A page was requested that does exist!");

 }

 } else {

 res.sendError(res.SC_INTERNAL_SERVER_ERROR,

 "No destination page was specified!");

 }

 }

}

The which parameter must be provided by a form or within the URL. The easiest way to
see this page in action would be to direct a browser to
"/chapter11/dispatch?which=red".

 242

It is important to realize that once the target page finishes, the forward() method will
return, and the calling servlet will regain control. However, the output stream will have
been closed, so the servlet should not try to set new headers or send new data. It can clean
up any global resources, if necessary. The calling servlet also cannot print any data before
calling forward(), because the target page will likely set one or more headers, and as
observed previously, this may not work if data has already been sent. A similar restriction
applies to the include() method. When including a page, the included page cannot set
any headers, because the servlet calling include() may have already printed data.

11.5 Using Scopes from Servlets

Chapter 3 discussed the various scopes in which beans can live. Although these scopes
are usually accessed by setting the scope field in a jsp:useBean tag, they can also be
accessed through scriptlets or through code in a servlet. Listing 11.6 shows a servlet with
a counter, which works much like the JSP in Listing 3.8 did.

Listing 11.6 A servlet with a page counter

package com.awl.jspbook.ch11;

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class Counter1 extends HttpServlet {

 private int count;

 public void init(ServletConfig sc)

 throws ServletException

 {

 super.init(sc);

 count = 0;

 }

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 243

 throws IOException,ServletException

 {

 handle(req,res);

 }

 public void doPost(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException,ServletException

 {

 handle(req,res);

 }

 public void handle(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException,ServletException

 {

 res.setStatus(res.SC_OK);

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML>");

 out.println("<HEAD><TITLE>A Counter</TITLE></HEAD>");

 out.println("<BODY>");

 out.println("This page has been accessed ");

 out.println(count);

 out.println(" times");

 out.println("</BODY>");

 out.println("</HTML>");

 count++;

 out.close();

 }

}

 244

The count variable here is not technically in a scope. But because the value will persist
as long as the servlet is active, the variable behaves as if it were in the application scope
in some sense. However, any value that was truly in the application scope could be
obtained from any JSP or other servlet, but count is available to only this one servlet.
Listing 11.7 shows how a similar counter can be used from the session scope, so the page
will count how often each user has visited it.

Listing 11.7 A servlet with a session-based counter

package com.awl.jspbook.ch11;

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class Counter2 extends HttpServlet {

 private static final Integer ONE = new Integer(1);

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException,ServletException

 {

 handle(req,res);

 }

 public void doPost(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException,ServletException

 {

 handle(req,res);

 }

 public void handle(HttpServletRequest req,

 HttpServletResponse res)

 245

 throws IOException,ServletException

 {

 HttpSession theSession = req.getSession();

 Integer count =

 (Integer) theSession.getAttribute("count");

 res.setStatus(res.SC_OK);

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML>");

 out.println("<HEAD><TITLE>A Counter</TITLE></HEAD>");

 out.println("<BODY>");

 if(count == null) {

 out.println("This is your first visit to this page!");

 count = ONE;

 } else {

 out.println("You have seen this page ");

 out.println(count);

 out.println(" times before");

 }

 theSession.setAttribute("count",

 new Integer(count.intValue() + 1));

 out.println("</BODY>");

 out.println("</HTML>");

 out.close();

 }

}

The call to getSession() will create a new session if one has not already been given to
the current user. This will cause a new cookie to be sent out along with this page. Once
the session has been obtained, the count variable is accessed with the call to getValue().

 246

Sessions can hold only objects, not primitive types, such as integers, which is why the
value is stored as an Integer.
The first time count is requested, it will not be in the session, and so null will be
returned. This allows the servlet to know that the session is new, so it can print a different
message. This corresponds closely to putting code or text in the body of a jsp:useBean
tag to do something special when the bean is created.
The variable ONE provides a very slight performance improvement, as it saves having to
construct a new Integer for every new request, which is both faster and uses less
memory. Technically, this means that every session will be sharing the same object, at
least for each user's first visit. Because the value of ONE is never changed, this does not
present a problem. However, this does hint at some interesting ways different users could
share changeable data. For example, two users could have the same HashMap in their
sessions, and any values placed in this map by one user could be seen by the other.
The application and request scopes work almost exactly the same way as the session
scope; the only difference is the methods used to store and retrieve objects. For the
request scope, objects are retrieved from the request object by calling
request.getAtribute(name), and objects are stored using the corresponding
request.setAtribute(name,value).
The application scope is stored in the ServletContext object, as only one of these is in
any given server. A servlet can store data in the application scope by calling
ServletContext sc = getServletContext();

sc.setAttribute(name,value);

Likewise, once the ServletContext has been obtained, objects can be retrieved from it
with sc.getAttribute(name).

11.6 Using Beans from Servlets

Beans are as useful for servlet authors as they are for JSP authors but are not quite as easy
to use from a servlet. Obtaining the bean is pretty straightforward, as shown in Listing
11.8, which uses the bean containing album information for Siouxsie and the Banshee's
"Tinderbox" from Chapter 3.

Listing 11.8 A servlet that uses a bean

package com.awl.jspbook.ch11;

 247

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.beans.*;

import com.awl.jspbook.ch03.AlbumInfo;

public class CDInfo extends HttpServlet {

 public void doGet(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException,ServletException

 {

 handle(req,res);

 }

 public void doPost(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException,ServletException

 {

 handle(req,res);

 }

 public void handle(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException,ServletException

 {

 AlbumInfo tinderbox;

 res.setStatus(res.SC_OK);

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 try {

 tinderbox = (AlbumInfo) Beans.instantiate(

 getClass().getClassLoader(),

 248

 "tinderbox3");

 } catch (Exception e) {

 tinderbox = null;

 }

 out.println("<HTML>");

 out.println("<HEAD><TITLE>Album Info</TITLE></HEAD>");

 out.println("<BODY>");

 if(tinderbox == null) {

 out.println("The bean could not be found or loaded");

 } else {

 out.println("<P>Album name: "

 + tinderbox.getName() + "</P>");

 String tracks[] = tinderbox.getTracks();

 out.println("<P>Tracks:</P>");

 out.println("");

 for(int i=0;i<tracks.length;i++) {

out.println("" + tracks[i]);

 }

 out.println("");

 }

 out.println("</BODY>");

 out.println("</HTML>");

 out.close();

 }

}

The call to instantiate() is what performs the real magic in this example. Here, it is
used to load a serialized bean, but if it were given the name of a class instead of a file
name, it would have loaded the class, called its constructor, and returned a new instance.
The first argument to instantiate() is a ClassLoader, which, as the name implies, is a
class that loads other classes. Every Java class can get access to the class loader that

 249

loaded it by calling getClassLoader(), and any object can get its class by calling
getClass().
Once the bean is loaded, it is treated like any other class. In particular, the bean is first
cast into the appropriate type, and then the methods of this class are called directly. This
is not using the full power of bean introspection, which can dynamically determine the
properties and methods of a bean at runtime. Introspection enables important JSP abilities,
such as the automatic setting of properties from form parameters.
Servlets can do introspection, but it is beyond the scope of this book, so an example will
not be provided here. More information can be found in a good book on beans or the Java
documentation, starting with the getBeanInfo() method of the
java.beans.Introspector class, which can be found at
http://java.sun.com/beans/javadoc/java.beans.Introspector.html.
Once it has been obtained by a call to instantiate(), a bean may be stored in any of the
four scopes. If a bean is placed in a scope by a servlet, a JSP can later retrieve the bean
from the scope through the normal jsp:useBean tag. The reverse is also true; any bean
placed in a scope by a JSP can be obtained and used by a servlet. For example, suppose
that Listing 11.7 had included the following lines:
ServletContext sc = getServletContext();

sc.setAttribute("tinderbox",tinderbox);

In that case, a JSP could access this bean with the following tag:
<jsp:useBean id="tinderbox"

 class="com.awl.jspbook.ch05.AlbumInfo"

 scope="application"/>

Note that when trying to load a serialized bean, a servlet or JSP will look for a file with
the .ser suffix. In this case, the file that is loaded will be tinderbox.ser.
The ability to store beans in the various scopes provides an easy and convenient way for
servlets and JSPs to share data and make the transition between them completely
transparent to users. In fact, this feature allows servlets to act as controllers in the
model/view/controller sense.
Typically, a request will first go to a servlet, which will do some complex processing
needed to set up a model, which will be represented as a bean. Once the processing is
complete, the bean will be placed in the page or request scope. The servlet will then
forward the request to one of several JSPs, based on various rules. The final JSP, in true
view fashion, will be concerned only with presenting the data in the bean. A simple use
of this design is illustrated over the next several listings, which demonstrate an

 250

application that takes a list of numbers and computes their sum and average. Listing 11.9
begins the process with the servlet.

Listing 11.9 A servlet that passes a bean to a JSP

package com.awl.jspbook.ch11;

import java.util.StringTokenizer;

import java.io.IOException;

import javax.servlet.*;

import javax.servlet.http.*;

public class SumAvgServlet extends HttpServlet {

 public void doPost(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException,ServletException

 {

 RequestDispatcher rd;

 ServletContext sc = getServletContext();

 String values = req.getParameter("values");

 SumAvgBean data = new SumAvgBean();

 int num = 0;

 int sum = 0;

 double avg = 0;

 int count = 0;

 /* Add the bean to the request scope */

 req.setAttribute("data",data);

 data.setValues(values);

 if(values == null) {

 rd = sc.getRequestDispatcher(

 "/chapter11/sumavgform.jsp");

 rd.forward(req,res);

 251

 } else {

 StringTokenizer st =

 new StringTokenizer(values,",");

 String token;

 while(st.hasMoreTokens()) {

 token = st.nextToken();

 try {

 num = Integer.parseInt(token);

 } catch (NumberFormatException e) {

 data.setBad(token);

 rd = sc.getRequestDispatcher(

 "/chapter11/sumavgerror.jsp");

 rd.forward(req,res);

 return;

 }

 count++;

 sum = sum + num;

 }

 }

 data.setSum(sum);

 data.setAvg(sum/count);

 rd = sc.getRequestDispatcher(

 "/chapter11/sumavgresults.jsp");

 rd.forward(req,res);

 }

}

This servlet creates a bean called data and puts it in the request scope. The bean is shown
in Listing 11.10.

Listing 11.10 A bean that contains sum and average data

package com.awl.jspbook.ch11;

 252

public class SumAvgBean {

 private int sum;

 private double avg;

 private String bad;

 private String values;

 public void setBad(String bad) {this.bad = bad;}

 public String getBad() {return bad;}

 public void setValues(String values) {

 this.values = values;

 }

 public String getValues() {return values;}

 public void setSum(int sum) {this.sum = sum;}

 public int getSum() {return sum;}

 public void setAvg(double avg) {this.avg = avg;}

 public double getAvg() {return avg;}

}

The servlet then checks whether it has been given any values. If not, it sends the request
onto sumavgform.jsp, which is shown in Listing 11.11.

Listing 11.11 A form in which numbers may be entered

<html>

<body>

Enter a list of numbers, seperated by commas. I will

compute their sum and average.

<form action="sumAvg" method="post">

<input type="text" name="values">

<input type="submit">

</form>

 253

</body>

</html>

All the numbers provided by the user are passed to the servlet in a single string. The
servlet then breaks this string into individual numbers and starts to add them. If a
non-number is encountered while processing, the servlet places the offending text in the
bean's bad property and passes the request to sumavgerror.jsp, which is shown in Listing
11.12.

Listing 11.12 A JSP that displays an error value from a bean

<jsp:useBean

 class="com.awl.jspbook.ch11.SumAvgBean"

 id="data"

 scope="request"/>

<html>

<head><title>Error</title></head>

<body>

<p>

I was unable to complete your request, because

<jsp:getProperty name="data" property="bad"/>

is not a number.

</p>

<form action="sumAvg" method="post">

<input type="text" NAME="values"

 value="<jsp:getProperty

 name="data"

 property="values"/>">

<input type="submit">

</form>

</body>

</html>

 254

Finally, if all goes well, the resulting sum and average are placed in a bean, and the
values are sent to sumavgresult.jsp, which is shown in Listing 11.13.

Listing 11.13 A JSP that displays results from a bean

<jsp:useBean

 class="com.awl.jspbook.ch11.SumAvgBean"

 id="data"

 scope="request"/>

<html>

<head><title>Results</title></head>

<body>

The sum of your numbers is

<jsp:getProperty name="data" property="sum"/>.

<p>

The average of your numbers is

<jsp:getProperty name="data" property="avg"/>.

</body>

</html>

If this example were to be written solely as a JSP and a bean, the JSP would need to
handle differentiating between the cases in which input is or is not provided. The JSP
would also need to handle the error conditions. Both of these situations would need to be
done either in Java or with some messy conditional tags. However, the servlet can handle
both the application logic and what might be called the page-flow logic. This leaves the
JSPs to do what they do best: handle the presentation.

11.7 The JSP Classes

As discussed in Chapter 1, a .jsp file is translated to a Java file by the page compiler, and
this file is then compiled and run to produce the page output. Now that servlets have been

 255

examined in some depth, it should be clearer what this translation entails. For example,
consider a simple JSP:
Hello!

<jsp:useBean

 id="aBean"

 class="com.awl.jspbook.ch11.SomeBean"/>

<jsp:getProperty

 name="aBean"

 property="aProperty"/>

This could turn into a servlet with the following service() method:
public void service(HttpServletRequest request,

 HttpServletResponse response)

{

 response.setStatus(res.SC_OK);

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("Hello!");

 com.awl.jspbook.ch11.SomeBean aBean =

 (com.awl.jspbook.ch11.SomeBean)

 Beans.instantiate(getClass().getClassLoader(),

 "com.awl.jspbook.ch11.SomeBean");

 out.println(aBean.getAPropety());

}

This service() method above is not precisely what is generated, but it gives a sense of the
kind of translations that take place. In fact the generated file does not even implement the
Servlet interface directly, nor does it extend HttpServlet. Instead it implements an
interface called HttpJspPage from the javax.servlet.jsp package. HttpJspPage
extends another interface called JspPage, and JspPage extends Servlet. In other words,
there is a whole hierarchy of JSP-related classes that closely mirrors the servlet hierarchy.
JspPage adds two additional methods to the Servlet interface: jspInit() and
jspDestroy(), which act much like the init() and destroy() methods in the Servlet

 256

class. The only difference is that jspInit() is not passed a ServletConfig object when
it is called; however, the ServletConfig can be obtained via the getServletConfig()
method.
HttpJspPage adds one additional method, _jspService(). This method is passed an
HttpServletRequest and HttpServletResponse, just like the service() method.
It is worth noting at this point that humans never write a _jspService(). This method is
built by the JSP engine, based on the original JSP file. If a programmer also provides a
method with this name, there would be a conflict. In practice, this is not a problem, as
any code that could be put in a service method can be put in a scriptlet in the JSP page.
The javax.servlet.jsp package also provides a number of classes that provide
additional information or make life easier for developers. Most of these classes will be
used only by the JSP engine, but page authors may well want to use the PageContext
class. An instance of this class is always available in a JSP as an implicit object called
pageContext.
The PageContext class provides a number of utility methods for handling scoped data
and hides the details of how various scopes are implemented. This means that instead of
having to know that the request scope is implemented by the HttpServletRequest class,
the application scope is in the ServletContext, and a single method can be used to get
or set data from any scope. These methods follow the naming conventions already
discussed and are called getAttribute() and setAttribute(). They work much like
the identically named functions from HttpServletRequest and ServletContext but
take an additional parameter specifying which scope to use. Listing 11.14 shows a JSP
that uses these methods to create a per session counter, just as Listing 11.6 did in a
servlet.

Listing 11.14 A JSP that uses the PageContext class

<HTML>

<HEAD><TITLE>Another counter</TITLE></HEAD>

<BODY>

<% Integer count = (Integer)

 pageContext.getAttribute("count",

 PageContext.SESSION_SCOPE); %>

 257

<% if (count == null) { %>

 <P>This is your first visit to this page!</P>

 <% count = new Integer(1); %>

<% } else {% >

 <P>You have seen this page

 <%= count %> times before </P>

 pageContext.setAttribute("count",

 new Integer(count.intValue()+1),

 PageContext.SESSION_SCOPE); %>

<% } %>

</BODY>

</HTML>

SESSION_SCOPE is a final integer indicating that the methods should use the session scope.
The other scopes have similar definitions. This code will turn into a Java class that is
almost identical to Listing 11.6 but is a little easier to write and maintain, if only because
all the calls to out.println() are avoided.

11.8 Intercepting Requests

In fulfilling their role as controllers, servlets often need to access a request before it goes
to a JSP, in order to set up some beans or make a decision about which JSP should be
invoked. The pattern of using a servlet to do some preprocessing before passing control
to a JSP is so common that it has been formally introduced into the servlet specification
by way of the Filter class.
The idea is that every request is allowed to pass through a filter chain, whereby each
element in the chain is a class that may manipulate arbitrary data. Often, the last element
in a chain is a JSP.
Normally, once it has finished its task, a particular filter will pass the request to the rest
of the chain, but it is also possible for a filter to "hijack" a request and handle it on its
own by generating its own output, issuing a redirect, or disallowing access. This makes
filters well suited to handling security, which will also be discussed in the next chapter.

 258

Before tackling the complex issues of security, here is a simpler example that illustrates
yet another way in which pages can display the current date and time. Instead of using a
custom tag, as was done previously, this version uses a filter that adds the data to the
request, as shown in Listing 11.15.

Listing 11.15 A filter

package com.awl.jspbook.ch11;

import java.io.IOException;

import javax.servlet.*;

import javax.servlet.http.HttpServletRequest;

import java.text.*;

public class DateFilter implements Filter {

 private DateFormat df = null;

 public void init(FilterConfig conf)

 throws ServletException

 {

 df = new SimpleDateFormat(

 conf.getInitParameter("format"));

 }

 public void doFilter(ServletRequest req,

 ServletResponse res,

 FilterChain chain)

 throws ServletException,IOException

 {

 HttpServletRequest hreq = (HttpServletRequest) req;

 hreq.setAttribute("date",

 df.format(new java.util.Date()));

 chain.doFilter(req,res);

 }

 259

 public void destroy() {}

}

Like servlets, filters are created when the system starts up; at that point, they can be
initialized through the init() method. Here, a configuration parameter is used to
determine how to format the date.
When a request comes in, the doFilter() method is called with a ServletRequest and
ServletResponse and a new object, called FilterChain, representing the rest of the
chain. The filter may then do anything it likes with the request and response and then
should call doFilter() on the FilterChain object to pass the request to the next filter
along the chain or the final JSP. Note that the filter has no knowledge about what the next
object in the chain will be, which allows filters to be connected together as needed. The
order in which filters will be invoked and the set of URLs that will be filtered are
controlled by the configuration file for the Web application, which is discussed in
Appendix B.
If the filter from Listing 11.15 is installed, a JSP can display the current time as simply as
<c:out value="${date}"/>

Using filters to set up data in this way can avoid a lot of the overhead of doing so in JSPs
or having to learn the tags in an extra custom tag library.

11.9 Summary and Conclusions

The servlet API provides the foundation on which JSPs are built, and understanding this
API can come in handy for page authors. The servlet API defines a life cycle for servlets,
starting with an init() method that is called when the servlet first loads, a service()
method that is called for each request, and a destroy() method that is called before the
servlet is retired. The init() method may allocate resources that requests will later need,
and destroy() can free these resources. The service() method is passed a request and
a response object, which it uses to get information about the request, set information
about the response, and send the data.
Servlets can use all the scopes discussed in Chapter 3. Servlets can also interact with JSPs,
using beans as an intermediary. Typically, the servlet will do the computation, build a
bean with the results, and send the bean on to the JSP for formatting, using the forward()
method. This provides the cleanest separation between logic and presentation.

 260

JSPs are ultimately servlets. Thus, for pages with any significant amount of HTML, a JSP
will almost always be the preferred means of creating pages, as it is easier to read and
maintain and it avoids all the print statements. On the other hand, pages that are
dominated mostly by code expressing page logic may be better off as a servlet, as this
will avoid having to put everything in scriptlets.

 261

Chapter 12. The Controller

So far, little has been said about the controller side of the model/view/controller paradigm.
One reason is that a great deal can be done without a formal controller. Without a model,
there would be nothing to show; without a view, there would be no way to show it. But so
far, it has been possible to muddle along by putting controller functionality into one of
the other layers. After all, the whole Java News Today site was built without a controller.
The site has been able to get away with this only because the models and views have
been pretty closely matched. Most of Java News Today's pages have had a one-to-one
correspondence among page elements, form fields, bean properties, and database fields.
The second, and more relevant, reason that controllers have not yet been discussed is that
it would have been impossible to do so without a thorough knowledge of Java. No special
JSP tags or similar building blocks can be used to build a controller; they must be hand
built in Java. Fortunately, an excellent framework simplifies the task of building such
controllers.
It was also necessary to understand bean implementations and servlets, as controllers will

mediate between user actions controlled by servlets and JSPs�which are themselves

servlets�and beans. Therefore, the Java code that comprises the controller must be able

to interface with both of these APIs.

12.1 Some Common Controller Tasks

Before building a controller, it is necessary to identify what it should do. This can be
determined by examining what has been put but that may not belong in the model and

view. Many JSPs throughout this book have followed a similar pattern; a form�part of

the view�has a number of fields for a user to fill in; when the form is submitted, the

values are loaded into a bean�the model�via jsp:setProperty tags. Then another

 262

jsp:setProperty may set a pseudoproperty, such as save, which causes the bean to
write the values to a database.
In this system, the beans are doing two unrelated things: modeling the conceptual entity
being manipulated, which is good, and talking to forms, which is bad. The latter requires
that the model and view must look pretty similar. At the very least, form names must
match property names, but more generally, developers must think of these two very
different things as connected in some way.
To separate the model from the view more cleanly, it would therefore make sense to
begin by splitting the bean into two: one that will truly model the system and the other
that will talk to the form. Doing this allows a cleaner delineation between the view
elements, consisting of the JSP containing the form and the form bean, and the model,
consisting of another bean that holds and manages the data to be maintained or modeled.
This distinction between form data and model data has already been present in a few
situations. Recall Listing 5.9, which allows a user to add a comment to a JNT article, and
Listing 7.3, which allows a reporter to create a new article. In both of these cases, the
underlying model needs to keep track of the user performing the action. This information
was provided by adding hidden fields to the form. In other words, the view was modified
to accommodate the needs of the model, although it would have been cleaner to introduce
a controller that would have added the user information without having to impact the
view.
Looking at the boundary between model and view in this way provides an opportunity to
start thinking about error conditions. So far, all the examples have been pretty lax about
the form inputs and have allowed users to enter into fields any data, even if it did not
make sense. The discussion on Listing 3.5, for examples, mentions that an error would be
displayed if a user tried to add something that was not a number, such as the string A.
This error would arise even if the user provided something that looks like a number to
humans but not to Java, such as 8,442.23; without extra work, Java cannot recognize an
expression with a comma as a number. Worst of all, the error displayed is useful to JSP
developers but will be totally unfriendly to any end users.
To address this issue, it is now time to start considering the problem of form validation:
ensuring that the user-provided values are both legal and sensible for the type of data they
are meant to represent. Also, a means to report problems back to users in a useful and
friendly way will be needed. The question then becomes whether this validation should
be done in the beans making up the model or the new form beans that are part of the
view.

 263

Because it is the model's job to store and act on the data, the model should usually be
responsible for all validation as well. Certainly, some kinds of validation can happen only
in the model; for example, in an online catalog, the model must check whether an item is
in stock when the user tries to purchase it. Likewise, a bean modeling a calculator that
can do division should be responsible for ensuring that the denominator is not zero.
However, a few kinds of validation are not intrinsic to the model but arise as part of the
way the model and view communicate. Again consider a calculator model, which may
have a method called add that takes two integers as arguments. When used directly by a
Java program, this method could not be invoked with the letter a as an argument. In
essence, the Java compiler would do the validation before the model was ever used.
The dynamic nature of JSPs bypasses this check by the compiler. This check could be put
into the calculator bean by adding to the add method a version that takes strings as
arguments and ensures that they look like numbers before proceeding. However, it has
been repeatedly stressed that a view should not need to know the details of how the
model works, yet here the model would be changed, based on the details of the view. One
reasonable compromise is to note that all semantic validation must be done in the model,
which is the only part of the system that knows what the data means, but that simple
syntactic validation can be done by the view, which in this case means by the new form
beans.
The controller's role in all this should now start becoming clear. The controller will take
values from the form and provide them to the form bean and will then ask that bean to
validate them. If the validation fails, the controller will send the user back to the original
form, providing the validation errors. The form can then display these errors and ask the
user to correct them. Once the validation succeeds, the controller will pass data from the
form bean to the model bean, along with any additional information, such as the current
user. The controller will then perform the desired action on the model, such as invoking a
save() method, and then send the user to the appropriate page from which to continue.
In addition to moving data from forms to the back-end model, controllers can prepare
beans that are used to move data from the model to JSPs. For example, the JNT article
page expected to be called with an articleId, which it would then use to load an
ArticleBean. The controller can detect that a user is going to the article page and can
prepare the appropriate ArticleBean on the page's behalf. This means that the view will
no longer need to deal with loading or initializing elements of the model. This will be
moved to the controller, where it belongs.
Finally, the controller can enforce security policies. For example, it can ensure that only
reporters are allowed to access the article creation page.

 264

12.2 Support for Controllers: Struts

It is clear that a great deal of new infrastructure is needed to support controllers. Means
are needed to associate form beans and controller actions with forms. These controller
actions must know where to send users after successfully completing an action. A way is
needed to send validation errors to users. Of course, the Java classes to implement the
controller actions must also be written.
This seems like a lot of work, but most of it has already been done by a toolkit called
struts, a free, open-source framework from the Jakarta projects, the same fine folks who
built Tomcat. Struts is much more than a way to build controllers; it is a complete
application framework containing view elements in the form of custom tags, a controller
framework, and much more. Although this book can cover only a small portion of what
struts can do, readers are encouraged to find out more at http://jakarta.apache.org/struts/.
Among the many other services it provides, struts adds another layer between data and
presentation. Up until now, content on a page either could be hard-coded in the page or
come from a bean. A typical example is the CD database from Chapter 6; the name of the
artist was provided by a bean, but the preceding string, Albums by:, was in the page itself.
Struts takes the approach that only structural elements should be part of a JSP, that is,
table cells, paragraph breaks, and so on. All other text, such as messages to users, labels
for form elements, and so on, should live in a common file separate from all JSPs.
Separating content from structure ensures some level of consistency, as a message used
on several pages is defined in one place. It also makes it easier to make changes, as there
is no question about where to find a particular message.
Most important, isolating all a site's text in one file makes it possible to support multiple
languages and locales easily. A site might have multiple versions of such a file. One for
English might contain:
message.entry=Welcome

message.departure=Goodbye

One for German might contain
message.entry=Willkommen

message.departure=Auf Wiedersehen

Using tags from the struts library or a utility class, a developer can refer to
message.entry, and the appropriate text will be retrieved, depending on whether the
location has been set to an English-speaking or a German-speaking locale. Note that the
dots in the names do not necessarily imply any sort of hierarchy, as the dots in bean

 265

properties do. Here, the dots are simply a convenient way to group messages mentally
into convenient units.

12.2.1 Using Struts

The servlet org.apache.struts.action.ActionServlet, is the entry point to struts.
This servlet is typically installed such that it will handle all URLs ending in .do. The
servlet reads a configuration file to determine what to do with each URL.
To make this more concrete, let's use struts to rebuild the calculator from Chapter 3. The
full set of messages used by this little calculator is shown in Listing 12.1.

Listing 12.1 The application messages

prompt.number1=First number

prompt.number2=Second number

message.result=The sum is:

button.save=Add

button.reset=Reset

button.cancel=Cancel

error.calculator.missing1=\

Please provide a value for the first number

error.calculator.missing2=\

Please provide a value for the second number

error.calculator.bad1=\

The first value does not look like a number

 266

error.calculator.bad2=\

The second value does not look like a number

errors.header=\

Please correct the following problem(s) and try again:

errors.footer=\

<hr>

Next, the model needs to be defined, which is quite simple and is shown in Listing 12.2.

Listing 12.2 The calculator model

package com.awl.jspbook.ch12;

public class Calculator {

 private double number1;

 public double getNumber1() {return number1;}

 public void setNumber1(double number1) {

 this.number1 = number1;

 }

 private double number2;

 public double getNumber2() {return number2;}

 public void setNumber2(double number2) {

 this.number2 = number2;

 }

 private double sum;

 public double getSum() {return sum;}

 public void setSum(double sum) {this.sum = sum;}

 public void computeSum() {

 267

 sum = number1 + number2;

 }

}

This class has simple properties for the two inputs and the resulting sum, as well as a
method, computeSum(), that will perform the computation. In this case, it would be easy
enough to have the controller compute the sum and store it by calling setSum(), but that
would be inappropriate, as the model should be responsible for managing all its data.
Note that nothing in this bean knows anything about taking values from a form or parsing
numbers with commas or anything else.
The next thing to build is the bean that will directly interface with the HTML form. This
is shown in Listing 12.3.

Listing 12.3 The calculator form

package com.awl.jspbook.ch12;

import java.text.DecimalFormat;

import javax.servlet.http.HttpServletRequest;

import org.apache.struts.action.ActionError;

import org.apache.struts.action.ActionErrors;

import org.apache.struts.action.ActionForm;

import org.apache.struts.action.ActionMapping;

public class CalculatorForm extends ActionForm {

 private String number1;

 public String getNumber1() {return number1;}

 public void setNumber1(String number1) {

 this.number1 = number1;

 }

 private String number2;

 public String getNumber2() {return number2;}

 268

 public void setNumber2(String number2) {

 this.number2 = number2;

 }

 public ActionErrors validate(ActionMapping mapping,

 HttpServletRequest request)

 {

 ActionErrors errors = new ActionErrors();

 DecimalFormat f =

 new DecimalFormat("###,###.##");

 if(empty(number1)) {

 errors.add("number1",

 new ActionError(

 "error.calculator.missing1"));

 } else {

 try {

 f.parse(number1);

 } catch (Exception e) {

 errors.add("number1",

 new ActionError(

 "error.calculator.bad1"));

 }

 }

 if(empty(number2)) {

 errors.add("number2",

 new ActionError(

 "error.calculator.missing2"));

 } else {

 try {

 f.parse(number2);

 } catch (Exception e) {

 errors.add("number2",

 269

 new ActionError(

 "error.calculator.bad2"));

 }

 }

 return errors;

 }

 private boolean empty(String s) {

 return s == null || s.trim().length() == 0;

 }

}

Note that this class extends a struts class called ActionForm. In struts terms, each thing
the controller does is considered an Action, and data is made available to an Action via
an ActionForm.
The CalculatorForm contains two simple properties to hold the inputs from the form.
These properties are Strings, whereas those in the model are doubles. This makes sense,
as a calculator can add numbers, but the form should allow the user to enter arbitrary text,
including representations of numbers with commas.
The CalculatorForm allows the inputs to be validated through the validate() method;
this method is defined in the ActionForm base class and will be called automatically by
struts when the form is submitted. The method is passed an ActionMapping, a struts class
containing information about the application, along with an HttpServletRequest, which
contains the usual request information. Neither of these is used in this example, but both
are available for more sophisticated kinds of validation.
The validate() method simply checks that values have been provided for both inputs
and that Java is able to turn the inputs into numbers. This latter test is done by attempting
to parse the data by using the java.text.DecimalFormat class, which here has been
told to allow numbers with commas. For more information about this class and how it is
used, consult the JDK documentation.
If a value is missing or malformed, a new ActionError, called errors, is added to the
set maintained by the ActionErrors object. The exact text of these error messages

 270

comes from the file in Listing 12.1, which means that these errors could be reported in
any language for which a file had been built.
At the end of the method, the errors are returned. Internally, struts will check this value.
If it is empty, there were no problems, and the form can be processed; otherwise, the user
must be informed of the errors and given the opportunity to fix them.
Now that the form bean is completed, it is time to write the class that will implement the
action. This is shown in Listing 12.4.

Listing 12.4 The Action handler

package com.awl.jspbook.ch12;

import java.io.IOException;

import java.lang.reflect.InvocationTargetException;

import java.text.DecimalFormat;

import java.util.Locale;

import javax.servlet.RequestDispatcher;

import javax.servlet.ServletException;

import javax.servlet.http.*;

import org.apache.struts.action.*;

import org.apache.struts.util.*;

public final class CalculatorAction extends Action {

 public ActionForward perform(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response)

 throws IOException, ServletException

 {

 // Populate the input form

 if (form == null) {

 form = new CalculatorForm();

 271

 request.setAttribute(mapping.getAttribute(),

 form);

 }

 CalculatorForm calcForm = (CalculatorForm) form;

 // Build the model

 Calculator calc = new Calculator();

 calc.setNumber1(getNumber(calcForm.getNumber1()));

 calc.setNumber2(getNumber(calcForm.getNumber2()));

 calc.computeSum();

 // Store the model in the request so the result

 // page can get to it

 request.setAttribute("calc",calc);

 return (mapping.findForward("success"));

 }

 private double getNumber(String s) {

 DecimalFormat d = new DecimalFormat("###,###.##");

 try {

 Number n = d.parse(s);

 return n.doubleValue();

 } catch (Exception e) {

 // No need to worry about parse errors, the

 // check in the form bean assures us of that!

 }

 return 0.0;

 272

 }

}

This class extends another struts class, Action, whose perform() method will be called
after the form bean successfully validates the inputs. This method is invoked with the
form bean, the same ActionHandler that was passed to the validate() method, and the
request and response. The method ensures that there is a valid form bean, constructs an
instance of the Calculator model bean, populates it, and then finishes the process by
calling computeSum(). In a more complicated example, the model bean might come from
a database or other repository rather than being constructed within the Action. Finally,
the calculator is stored in the request, which sets everything up for the result page to
display the sum, and the name of the result page is returned. This name is not hard-coded
but rather is kept in the ActionMapping under a key called success.
That completes the set of classes. It may seem at this point that a lot of overhead is
needed to do something as simple as adding two numbers. However, as the task gets
more complicated, the amount of overhead diminishes proportionally. A real system
needs form validation and a way to perform the required actions, and so writing some
amount of Java code is inescapable. The more complex these tasks become, the lighter
the struts framework will seem in comparison, and the advantages of using such a
framework will rapidly become obvious.
Now that the classes are completed, struts needs to be told how to use them. This is
accomplished by providing a configuration file that the ActionServlet reads when it
starts up. A minimal version of this file is shown in Listing 12.5.

Listing 12.5 The struts configuration file

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE struts-config PUBLIC

"-//Apache Software Foundation//DTD Struts Config 1.0//EN"

"http://jakarta.apache.org/struts/dtds/struts-config.dtd">

<struts-config>

 <form-beans>

 <!-- Calculator form bean -->

 273

 <form-bean name="calculatorForm"

 type="com.awl.jspbook.ch12.CalculatorForm"/>

 </form-beans>

 <action-mappings>

 <action path="/calculator"

 type="com.awl.jspbook.ch12.CalculatorAction"

 name="calculatorForm"

 scope="request"

 validate="true"

 input="/chapter12/calculator.jsp">

 <forward name="success"

 path="/chapter12/calc_result.jsp"/>

 </action>

 </action-mappings>

</struts-config>

The first section defines all the form beans the application will use, which here is the
CalculatorForm defined earlier. It is given a name, calculatorForm, which will be
used to reference it from JSP pages and elsewhere in the file.
The next section defines the actions the application will perform. The path attribute
defines the URL for which this action will be taken. Recall that by convention, the
ActionServlet is configured to handle all URLs ending in .do, so this clause of the
configuration file indicates that CalculatorAction will be invoked when the user
accesses the URL /jspbook/chapter12/calculator.do. The name parameter indicates the
name of the form class to use, which here is the name given to the CalculatorForm in
the previous section. The scope parameter names the scope in which the form bean
should be stored. Using the session scope would allow one bean to collect inputs from a
number of forms spread across many JSP pages. This is useful for applications that must
collect a great deal of information before they can perform their actions. The validate
flags indicates whether the validate() method of the form bean should be called before
calling the perform() method of the handler. Finally, the input parameter indicates the
JSP file that contains the form. This value is used if there are any errors validating the
form and the user must be sent back to correct them.
The action tag may contain any number of forward tags that give symbolic names to
pages. This example has only one, called success, which matches the name used in the

 274

CalculatorAction. Using symbolic names like this makes it much easier to modify the
way sites behave. If it was ever decided that after successfully computing a sum the
calculator should send the user somewhere other than calc_result.jsp, it would simply be
necessary to change the configuration file. The Java file would not need to be changed or
recompiled.
Here, struts has been configured with two pages: calculator.jsp, which is marked as the
input, and calc result.jsp, which is marked as the "success" URL. Struts will determine
which of these pages is appropriate, based on the input it has received, and will then use a
RequestDispatcher to include it. This means that regardless of whether the user is
looking at the input or result pages, the URL will be calculator.do. This one URL thus
controls access to these two pages, further justifying the use of the term controller.
That completes construction of the model and controller, and struts will even simplify the
task of completing the view. The input page is shown in Listing 12.6.

Listing 12.6 The input page

<%@ taglib prefix="bean"

 uri="http://jakarta.apache.org/struts/bean" %>

<%@ taglib prefix="html"

 uri="http://jakarta.apache.org/struts/html" %>

<html:html>

<head>

 <title>Calculator</title>

 <html:base/>

</head>

<body>

<html:errors/>

<html:form action="/calculator">

 275

<bean:message key="prompt.number1"/>

<html:text property="number1"/>

<bean:message key="prompt.number2"/>

<html:text property="number2"/>

<html:submit>

 <bean:message key="button.save"/>

</html:submit>

<html:reset>

 <bean:message key="button.reset"/>

</html:reset>

<html:cancel>

 <bean:message key="button.cancel"/>

</html:cancel>

</html:form>

</body>

</html:html>

This example imports two tag libraries from struts, installed as bean and html. The bean
tag library supports a number of tags that simplify working with beans, especially for
connecting form beans to forms. The html tag library provides a number of tags that
simplify the creation of html; of particular interest is a set of tags that simplifies the
construction of forms and adds some useful functionality.

 276

The first use of these tags is encountered at the top, with the html:html tag. This tag
doesn't render any output beyond a standard html tag but does set up a context that other
struts tags will use internally. This is also true of the html:base tag a few lines down,
which establishes the current URL from which URLs to the action and result pages can
be built.
The html:errors tag displays all the messages that have been added to the
ActionErrors object by the CalculatorForm in Listing 12.2. The first time a user
accesses this page, it will not yet have been through the CalculatorForm, so the
html:errors will not render any output. If there are errors, html:errors will first
display the value of the errors.header property from Listing 12.1, then each of the
errors, then errors.footer. This makes it as easy to change the format of the errors as it
is to change their text.
The form itself starts a little lower and begins with another new tag, html:form. This tag
renders as a regular HTML form tag but ensures that the action points to the right place.
In particular, this tag will ensure that the form gets sent to the ActionSeverlet by
pointing the URL at jspbook/chapter12/calculator.do. This in turn will allow the servlet to
use the name calculator to look up the correct form bean and action handler in the
configuration file.
A number of bean:message and html:text tags follow. The bean:message tag simply
looks up a message in the resource file from Listing 12.1, once again allowing the
messages to be configured, changed, or localized. The html:text tags render a standard
HTML input of type text; in addition, struts can use the name of the provided property
and what it knows about the form bean to provide values for these fields as the form is
rendered.
This is tremendously useful. Consider what will happen if a user provides a value for the
first number but leaves the second one blank. As previously noted, the validate()
method will fail, and the user will be returned to this input form. The html:errors tag
will display the appropriate error message informing the user to provide a value for the
second number. However, as the user already filled in the first number, it would not be
friendly to make the user fill it out again! The html:text tag will be able to get the value
for the first number back out of the form bean and make it the default value, so the user
will not need to reenter it. Conceptually, this is similar to writing
<input

 type="text"

 name="number1"

 value="<c:out value="${calculatorForm.number1}"/>">

 277

The html:text tag hides all the details of which bean and property are used and is
therefore much easier to work with. Struts provides similar tags that handle check boxes,
text areas, and all the rest. Struts even provides tags to handle form submit and reset
buttons, as shown at the bottom of Listing 12.6.
This is made possible by the fact that the JSP is included by the servlet. The servlet sets
up the CalculatorForm bean and places it in the request, so when validation fails and the
RequestDispatcher includes calculator.jsp, the bean and hence the user's original inputs
are still available.
The only remaining piece of the calculator is the result page, which is shown in Listing
12.7.

Listing 12.7 The result page

<%@ taglib prefix="bean"

 uri="http://jakarta.apache.org/struts/bean" %>

<%@ taglib prefix="html"

 uri="http://jakarta.apache.org/struts/html" %>

<html:html>

<head>

 <title>Calculator</title>

 <html:base/>

</head>

<body>

<html:errors/>

<html:form action="/calculator">

<bean:message key="prompt.number1"/>

<html:text property="number1"/>

 278

<bean:message key="prompt.number2"/>

<html:text property="number2"/>

<html:submit>

 <bean:message key="button.save"/>

</html:submit>

<html:reset>

 <bean:message key="button.reset"/>

</html:reset>

<html:cancel>

 <bean:message key="button.cancel"/>

</html:cancel>

</html:form>

</body>

</html:html>

That's it! The page does not need to load the Calculator, which was already done by the
CalculatorAction. The page is thus reduced to pure view, with no controller elements
at all, which is how it should be.

12.2.2 Providing Security

In addition to controlling the interaction between the view and the model, a controller
also controls access to the site and individual pages. The general issues of security and
protecting pages and resources are complicated, and they cannot be addressed in depth
here. Numerous books discuss the topic, and the Java platform itself provides many
libraries that handle security issues. For now, however, the discussion is limited to a

 279

relatively simple problem: ensuring that only reporters are allowed to create new articles
for Java News Today.
Recall that the user_info table in Chapter 7 contains a reporter_ind that is Y if the
user is a reporter. This flag, through the UserInfoBean, is used to determine whether to
show the link to the article creation page. However, if a malicious nonreporter knows to
type create_article.jsp into the browser URL window, nothing stops the person from
creating as many stories as desired. The goal, then, is to find a way to protect this page so
that nonreporters will be unable to access it.
The simplest way of doing this would be to use the c:if tag to wrap the sensitive parts of
the page:
<c:if test="${user.isReporter}">

... contents of the article creation form ...

</c:if>

In this case, a nonreporter can still access the page but will not be able to use the form.
This approach is a bit unsatisfying, though. If there were many reporter-only pages, it
would be necessary to replicate this code on all of them. The closing tag may also be far
from the opening tag, which might obscure the page logic to someone trying to maintain
the page months after it was written.
This latter problem can be fixed by reversing the test and sending a nonreporter away
from the page. This can be done with the jsp:forward we saw in Chapter 11:
<c:if test="${!user.isReporter}">

 <jsp:forward page="non_reporter.jsp"/>

</c:if>

This code could even be made a little smaller by creating a new custom tag that takes a
security check and a page to which nonauthorized users should be sent:
<awl:secure

 test="${!user.isReporter}"

 page="non_reporter.jsp"/>

Although either of these solutions has the advantage of being more self-contained than
the first version, it still needs to be added to every page.
Alternatively, struts could be used to protect pages. So far, an "action" has been thought
of as the submission of a form, but it is perfectly valid to treat the simple clicking of a
link as an action as well and to send it to an action handler. A ProtectAction class that
would check whether the user in the session is a reporter could be created, and if so, send
that person to the "success" URL. Each protected page would then have an entry in the
configuration file:

 280

<action path="/create_article"

 type="com.awl.jspbook.ch12.ProtectAction"

 scope="request"

 input="/chapter12/non_reporter.jsp">

 <forward name="success"

 path="/chapter12/create_article.jsp"/>

</action>

A reporter accessing create_article.do will then get the contents of create_article.jsp and
non_reporter.jsp otherwise. This latter page might have some stern words for users trying
to hack the system or a kinder message suggesting that the user log in as a reporter or
request a reporter account from the editorial staff.
The only problem with this approach, of course, is that it won't work; create_article.jsp
will still exist as an independent page. If a user goes there instead of to create_article.do,
the check will not be performed.
It is said that every failure carries the seeds of success; this approach has some valuable
ideas that would be useful to carry over. Specifically, it is a good idea to keep all security
information in a configuration file rather than in each JSP. Further, the security system
should sit "in front of" each page; put another way, the security system should get
invoked before the user even gets to the page. Both of these facts are yet another
restatement of the advantages of using a controller that is separate from the view.
So, we want something that gets access to requests before they reach the JSP and that can
be configured from one place. That sounds a lot like the Filter class from Chapter 11! A
Filter can be configured to intercept any set of JSP requests and take all their
configuration information from a single file called web.xml, which is discussed in more
detail in Appendix B.
Conceptually, the Filter that is needed is quite simple. It will be configured with a set of
pages that should be protected and a page to which nonauthorized users should be sent.
For each request, it then needs to check only whether the request is for one of the
protected pages, and if so, whether the user in the session is a reporter. This filter is
shown in Listing 12.8.

Listing 12.8 The security filter

package com.awl.jspbook.ch12;

 281

import java.util.StringTokenizer;

import java.io.IOException;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.HashMap;

import com.awl.jspbook.ch07.UserInfoBean;

public class ProtectFilter implements Filter {

 private HashMap protectedPages = null;

 private String loginPage = null;

 public void init(FilterConfig conf)

 throws ServletException

 {

 loginPage = conf.getInitParameter("loginPage");

 protectedPages = new HashMap();

 String pages =

 conf.getInitParameter("protectedPages");

 StringTokenizer st =

 new StringTokenizer(pages,",");

 while(st.hasMoreElements()) {

 protectedPages.put(st.nextElement(),

 Boolean.TRUE);

 }

 }

 public void doFilter(ServletRequest req,

 282

 ServletResponse res,

 FilterChain chain)

 throws ServletException,IOException

 {

 HttpServletRequest hreq =

 (HttpServletRequest) req;

 String page = hreq.getRequestURI();

 if(protectedPages.get(page) == Boolean.TRUE) {

 HttpSession ses = hreq.getSession(true);

 if(ses != null) {

 UserInfoBean inf =

 (UserInfoBean)

 ses.getAttribute("userInfo");

 if(inf != null && inf.getIsReporter()) {

 chain.doFilter(req,res);

 return;

 }

 }

 }

 HttpServletResponse hres =

 (HttpServletResponse) res;

 try {

 hres.sendRedirect(loginPage);

 } catch(IOException e) {}

 }

 283

 public void destroy() {}

}

The doFilter() method does essentially what was described earlier. The init()
method sets up the necessary values. The loginPage is straightforward and should
contain only the name of the page previously referred to as non_reporter. jsp. The
protectedPages parameter should be a comma-separated list of pages to protect, which
the init() method will break into individual strings, which get used as keys in the
protectedPages HashMap, all of whose values are TRUE. This common trick is used to
check whether a given item is in a set, as checking whether an item is being used as a key
in a HashMap can be done very quickly and easily, as shown in the doFilter method.
It is also worth discussing one other problem that illustrates just how insidious security
problems can be. The handler for changing user preferences sets all properties with a call
to <jsp:setProperty property="*";/>. Normally, this will set all the fields from the
form, but what would happen if a knowledgeable but unscrupulous user were to access
user_prefs_handler.jsp?reporterInd=Y directly? The jsp:setProperty tag would
set the reporterId value to Y and would then dutifully call the setSave() method. The
result would be that the user would have become a reporter! One way to fix this is to list
every property explicitly rather than relying on the asterisk version of the
jsp:setProperty tag or to use the controller to disallow setting the reporterInd
property. In general, though, the lesson is that securing a Web site is difficult, and a great
deal of attention must be paid to the details.

12.2.3 Struts and JNT

At this point, it would be possible to rewrite JNT almost completely by using the struts
framework. Action handlers could be introduced at the section and article levels, as an
action can consist of clicking a link and submitting a form. A simple handler for the
article page is shown in Listing 12.9.

Listing 12.9 The article handler

package com.awl.jspbook.ch12;

import java.io.IOException;

import java.lang.reflect.InvocationTargetException;

import java.text.DecimalFormat;

 284

import java.util.Locale;

import javax.servlet.RequestDispatcher;

import javax.servlet.ServletException;

import javax.servlet.http.*;

import org.apache.struts.action.*;

import org.apache.struts.util.*;

import com.awl.jspbook.ch07.ArticleBean;

public final class ArticleAction extends Action {

 public ActionForward perform(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response)

 throws IOException, ServletException

 {

 // Make sure we were given a valid articleId

 String articleIdString =

 request.getParameter("articleId");

 if(articleIdString == null) {

 return mapping.findForward("noSuchArticle");

 }

 Integer articleId = null;

 try {

 articleId = new Integer(articleIdString);

 } catch (NumberFormatException nfe) {

 return mapping.findForward("noSuchArticle");

 }

 285

 // Get the model

 ArticleBean article = new ArticleBean();

 // Load the data

 article.setArticleId(articleId);

 // Make sure that articleId actually exists in the

 // database

 if(article.getHeadline() == null) {

 return mapping.findForward("noSuchArticle");

 }

 // Everything's ok - Store the model in the

 // request so the result page can get to it

 request.setAttribute("article",article);

 return mapping.findForward("success");

 }

}

With this handler installed as article.do, the article JSP page could drop the jsp:useBean
and jsp:setProperty tags and simply use the ArticleBean that has been placed in the
request. The action handler also performs a number of checks to ensure that the requested
article exists and can send the user to an error page if it does not.
On the other hand, using a controller in this case requires 54 lines of Java code instead of
2 lines of JSP code. Further, the error conditions for which it checks are things that may
not be worth worrying much about. The only two ways in which an articleId can be
sent to the article page are clicking a link built on the section or index pages or the user's
typing one directly into the browser. In the first case, it is ensured that the articleId is

 286

valid, because the site itself provided it. In the second case, the user is using the site in a
way not intended. This should be cause for concern if doing so could in any way damage
the system or impact other users; in this case, the worst that could happen is that the user
who is misusing the system will get a page with some garbage data or an error message.
In the end, it's up to each site developer to weigh the complexity of protecting every page
from every possible input against the consequences to the user and the site as a whole if
they are not checked.
One place where it clearly does make sense to use a controller is in form handling,
notably the login handler. This would work much like the previous examples in this
chapter, so it will not be presented here, but the necessary steps should be pretty clear.
The index page would be identified as the "success" page, and a new page with only the
login form would be identified as the "input." It would be necessary to ensure that a user
name and password were provided to the system, as well as that the user exists and has
that password. Checking that the fields were filled in could be done by the form bean's
validate() method, whereas the more semantic checks for user existence and
correctness would be done in the model via the UserInfoBean.

12.3 Summary and Conclusions

This completes construction of the last of the three pillars on which good Web
applications stand. Although the role of the controller may be a little more elusive than
that of the model or view, it is certainly no less important. One measure by which to
judge how badly a controller is needed is to count the JSP lines that do not directly turn
into data for the user. For example, jsp:useBean and jsp:setProperty tags are
important, but the user will never see them directly. If a page has many such tags, it may
be an indication that a controller should be loading these beans.
Unlike beans, servlets, and JSPs, struts is not part of a formal specification, and it is
certainly possible to build standards-compliant Web applications without it. However,
struts is a first-rate tool and is free, so it should be considered when building a controller.

 287

Chapter 13. Creating New Tag
Libraries

Since Chapter 4, we have seen that custom tag libraries are an invaluable asset. The time
has now come to learn how to create new ones. Fundamentally, tags are not much more
complicated than servlets; in fact, servlets could be used to construct a very limited form
of custom tag. If it rendered the current time to a page, a servlet could be used almost as a
"tag":
<jsp:include page="/dateServlet">

 <jsp:param name="format" value="HH:MM:SS"/>

</jsp:include>

Alternatively, if tags were implemented as servlets and held to the bean naming
conventions, the page compiler could take a simple JSP:
Here is the date:

<awl:date format="HH:MM:SS"/>

<p>

and turn it into the following code:
public void service(HttpServletRequest request,

 HttpServletResponse response)

{

 response.setStatus(res.SC_OK);

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("Here is the date:");

 DateServlet tag = new DateServlet();

 tag.setFormat("HH:MM:SS");

 tag.service(request,response);

 out.println("<p>");

 288

}

Including the contents of a servlet within a page using either of these approaches is not
quite enough to do everything that a tag does. However, this concept will serve as a
convenient jumping-off point in exploring how tag libraries are constructed.

13.1 The Tag Life Cycle

The first step in being able to write new tags is to understand how pages will use them.
Consider a standard usage of a tag, such as the awl:date tag from Chapter 4.
<awl:date format="HH:MM:SS"/>

Clearly, this request must be handled by a class. The name of this class will be associated
with the name awl:date through a configuration file that will be described shortly. For
now, the class is called com.awl.jspbook.ch04.DateTag and must implement an
interface called javax.servlet.jsp.tagext.Tag.
A logical question at this point is whether the lookup of this class should happen at
request time or translation time.[1] Doing it at request time would be more dynamic and
might allow for some additional functionality, such as changing tag definitions on the fly.
However, the introspection mechanisms that allow for this kind of dynamic behavior can
be slow, and as tags are so ubiquitous, it is worth doing everything possible to make them
fast.

[1] If the terms translation time and request time are unclear, refer to Chapter 2.

Therefore, the resolution from tag names to class names happens at translation time, and
code to build the tag class will be placed in the resulting servlet. Likewise, the tag
configuration file can specify all the parameters the tag will accept, so there is no need to
look them up dynamically as is done to obtain bean properties. However, if tag classes
stick to the bean naming conventions, the page translator will, when it sees a tag attribute
called format, know to construct a call to setFormat() in the DateTag class.
In addition to any parameters that the tag accepts, it will need some other information in
order to do its job. At the very least, the DateTag will need access to out, the output
stream to which it should send the formatted date. It is reasonable to expect that in
general, tags will need access to the full HttpServeltRequest and
HttpServletResponse objects. Both of these objects, as well as a great deal of

 289

additional information, is handily contained in the class introduced in Chapter 12. The tag
class must therefore provide a setPageContext() method to receive this information.
Some tags may also need to know whether they have been nested within another tag. The
c:when and c:otherwise tags need a way to access the c:choose tag that surrounds
them. The c:choose tag can keep track of whether a matching condition has been found
yet, and each c:when tag can then ask the c:choose tag whether it should bother to check
its test condition. The outer tag is called the parent, and so the tag class must have a
setParent() method.
Next, the tag will need to provide something akin to the servlet service() method to do
the work. Unlike a servlet, however, a tag consists of two parts: the opening and closing
tags. The preceding example has only an opening tag, and a /> is used to indicate the
absence of a closing tag, but this is really just shorthand for
<awl:time ...></awl:time>. In general, there may also be body content between these
open and close tags. Therefore, rather than having a single service() method, tags must
provide doStartTag() and doEndTag() methods.
Finally, once it has completed its task, a tag may need to clean up some resources, as a
servlet does in its destroy() method. The equivalent for tags is called release().
A few modifications to this basic scheme need to be considered before it will be possible
to write DateTag. To allow maximum flexibility, a tag may wish to specify whether its
body content should be evaluated, an obvious example of which is the c:if tag. This is
accomplished by allowing doStartTag() to return a code indicating how the tag's body
should be treated. Possible values are EVAL_BODY_INCLUDE and SKIP_BODY.
Similarly, doEndTag() may decide that the rest of the page should not be evaluated, such
as in a custom security tag that wishes to hide the contents of a page from unauthorized
users. Therefore, the doEndTag() will also return a status code, which may be EVAL_PAGE
or SKIP_PAGE.
Given all this, the page translator will, when it encounters the awl:date tag, inject
something like Listing 13.1 into the servlet.

Listing 13.1 Tag code generated by the page translator

com.awl.jspbook.ch13.DateTag t =

 new com.awl.jspbook.ch13.DateTag();

t.setFormat("HH:MM:SS");

t.setPageContext(... the page context ...);

t.setParent(... the tag's parent ...);

 290

if(t.doStartTag() == EVAL_BODY) {

 ... code built for the contents of the tag body ...

}

if(t.doEndTag() == EVAL_PAGE) {

 ... code built for the rest of the page ...

}

t.release();

The exact code generated will depend on a number of factors. Some JSP engines will
attempt to reuse tags when possible to avoid the overhead of the constructor. Some may
exit the page immediately if doEndTag() returns SKIP_BODY rather than wrapping the
page in a conditional. Tag authors should not rely on the specifics of the translation; nor
should they need to. The exact details of how tags behave is spelled out in the JSP
specification, and all JSP engines will adhere to those rules, regardless of the code they
generate.

13.2 Tags without Bodies

We now know everything we need to know in order to write a custom tag. Listing 13.2
shows the much-discussed awl:date tag:

Listing 13.2 A custom tag

package com.awl.jspbook.ch04;

import java.io.IOException;

import java.text.SimpleDateFormat;

import java.util.Date;

 291

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

public class DateTag implements Tag {

 private String format;

 public String getFormat() {return format;}

 public void setFormat(String format)

 {this.format = format;}

 private PageContext pageContext;

 public PageContext getPageContext()

 {return pageContext;}

 public void setPageContext(PageContext pageContext) {

 this.pageContext = pageContext;

 }

 private Tag parent;

 public Tag getParent() {return parent;}

 public void setParent(Tag parent)

 {this.parent = parent;}

 public int doStartTag() throws JspException {

 SimpleDateFormat df = new SimpleDateFormat(format);

 try {

 pageContext.getOut().print(df.format(

 new Date()));

 } catch (IOException e) {}

 292

 return EVAL_BODY_INCLUDE;

 }

 public int doEndTag() throws JspException {

 return EVAL_PAGE;

 }

 public void release() {

 pageContext = null;

 parent = null;

 }

}

This listing has all the elements that were deemed to be necessary by the preceding
discussion. It has set methods for the custom format attribute, as well as the
pageContext and parent. Corresponding get methods for these properties have also
been provided in order to make the tag class more beanlike, although in this case, no one
is likely ever to use those methods.
The doStartTag() uses the pageContext to get out, to which it sends the formatted
date before returning EVAL_BODY_INCLUDE. Both of these actions would seem to be
correct, but if a page author decides to use a closing </awl:date> tag, the date should
probably replace the opening tag instead of the closing one, and the body content should
be included rather than mysteriously vanishing, as would happen if SKIP_BODY were
returned.
Although the doStartTag() sends only a bit of data to the page, keep in mind that this
method can do anything a servlet can do, including accessing beans or setting their
properties in the various scopes. This is what makes tags so useful: They expose the full
power of servlets in neat little packages easily used from JSPs.
Regardless of whether the page author uses a close tag, nothing is to be done when the
tag ends, so doEndTag() simply returns EVAL_PAGE. Also, no special cleanup needs to be
performed in the release() method. However, the method sets the parent and
pageContext to null, which may allow Java to reclaim the memory allocated to those
objects sooner rather than later.
Now that the tag code has been written, it needs to be added to the configuration file
mentioned earlier. Two files are involved here. The first, web.xml, is used to configure

 293

the whole application, including the set of servlets and filters and many other things.
More details about this file may be found in Appendix B, but the portion relevant to tag
libraries looks like this:
<taglib>

 <taglib-uri>

 http://awl.com/jspbook/samples

 </taglib-uri>

 <taglib-location>

 /WEB-INF/taglibs/awl.tld

 </taglib-location>

</taglib>

The taglib-uri portion specifies the URI that will be used in the taglib directive to
load the tag library. The taglib-location specifies the location of the tag library
description (TLD) file, which is specified relative to the top-level directory for the Web
application. This file contains an entry for each tag named in the class, the attributes, and
so on. For a library containing only the date tag, the TLD file would contain the
following:
<?xml version="1.0" ?>

<!DOCTYPE taglib

PUBLIC "-//Sun Microsystems, Inc.

 //DTD JSP Tag Library 1.2//EN"

"http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>

 <tlib-version>1.0</tlib-version>

 <jsp-version>2.0</jsp-version>

 <short-name>samples</short-name>

 <uri>http://awl.com/jspbook/samples</uri>

 <display-name>Samples for JSP book</display-name>

 <description>Samples for JSP book</description>

 <tag>

 294

 <name>date</name>

 <tag-class>com.awl.jspbook.ch04.DateTag</tag-class>

 <body-content>JSP</body-content>

 <attribute>

 <name>format</name>

 <required>true</required>

 </attribute>

 </tag>

</taglib>

The version information at the top specifies the minimal requirements for this tag library.
Here, it is indicated that JSP version 2 is required, although this particular tag would
work with anything as far back as 1.1. Shortly, however, tags that use the expression
language will be introduced, and these tags will require 2.0.
The display-name, short-name, and description convey some information to anyone
reading the file but are meant primarily for development environments, such as NetBeans,
that provide a rich workspace and tools to simplify the development and testing of JSPs.
The list of tags follows the opening section, which applies to the whole library. Each tag
has a name that the page will use and a tag-class specifying the implementing class.
Each attribute that the tag accepts will have an entry; here, there is only one, for the
format attribute. Attributes may be marked as required, in which case the page
translator will report an error at translation time if the attribute is missing.
Normally, every attribute that the tag can accept should have an entry in the attribute
section. If a tag implements the DynamicAttributes interface and provides a method
called setDynamicAttribute(), however, it is possible to send it arbitrary attributes at
request time. These dynamic attributes are passed to the tag by using the jsp:attribute
tag in the body of the tag in question. For each of these attributes, the tag's
setDynamicAttribute() method will be called with the name of value of the attribute.
Sometimes, it is not sufficient simply to check whether required tags are present in each
tag usage. Sometimes, a tag will need one of several attributes to be set but will not care
which one. A tag that retrieves information about an album might have an attribute to
specify the name and another to specify a unique album ID. Neither one of these will be
required, but it is required that one or the other be given.
This situation can be handled by creating an auxiliary class that the page translator will
use to perform additional checks on the attributes. Such classes extend the TagExtraInfo
class and perform their checks in methods called validate() and doValidate(). The
page translator is told of the existence of a TagExtraInfo class by providing it in the

 295

TLD along with the name of the class, using the tei-class tag. TagExtraInfo classes
are also able to notify the page translator that the tag will be creating new special
variables called scripting variables, although this technique has been largely superseded
by the practice of adding attributes to the pageContext, using the setAttribute()
method.
The use of the TagExtraInfo class is beyond the scope of this book, and it is used
relatively infrequently. However, readers who explore the TLDs for the standard tag
library will see a few references to that class.

13.3 Tags with Bodies

Often, tags will need access to their bodies beyond being able to specify whether to
evaluate them. Iteration tags, such as c:forEach, will need to be able to evaluate their
bodies several times and each time through will need to do some additional processing to
manage the array over which it is iterating. The awl:reverse tag from Chapter 4 also
needs access to the contents of its body so that it can reverse the text before sending it to
the page. Neither of these things can be done from classes that simply implement the Tag
interface.
Therefore, an extension of Tag, BodyTag, has some additional methods for dealing with
bodies. The first of these methods is doInitBody(), which is called before the body is
evaluated. This method can be used to initialize iteration variables. The doAfterBody()
method is called after the body has been processed but before doEndTag(). This method
may return EVAL_BODY_AGAIN in order to repeat the body or SKIP_BODY to end
processing. Finally, BodyTag provides the setBodyContent() method, which is passed a
BodyContent object containing the contents. BodyTag also introduces a new value,
EVAL_BODY_BUFFERED, which doStartTag() may return to indicate that the tag will want
to intercept the contents of the body for processing.

Because of the numerous methods�often many of them doing standard things�to write

when building a BodyTag, a convenience class, BodyTagSupport, is provided that by
default runs through the body once and simply sends the contents of the body directly to
the page. The common approach to building body tags is to extend this class rather than
to implement BodyTag directly. This is what the ReverseTag from Chapter 4 does, as
shown in Listing 13.3.

 296

Listing 13.3 A tag with a body

package com.awl.jspbook.ch04;

import java.io.IOException;

import java.io.StringWriter;

import java.text.SimpleDateFormat;

import java.util.Date;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

public class ReverseTag extends BodyTagSupport {

 private PageContext pageContext;

 public PageContext getPageContext()

 {return pageContext;}

 public void setPageContext(PageContext pageContext) {

 this.pageContext = pageContext;

 }

 private Tag parent;

 public Tag getParent() {return parent;}

 public void setParent(Tag parent)

 {this.parent = parent;}

 public int doStartTag() throws JspException {

 return EVAL_BODY_BUFFERED;

 }

 297

 public int doEndTag() throws JspException {

 String output = "";

 if(bodyContent != null) {

 StringWriter sw = new StringWriter();

 try {

 bodyContent.writeOut(sw);

 output = sw.toString();

 } catch(java.io.IOException e) {}

 }

 output = doReverse(output);

 try {

 pageContext.getOut().print(output);

 } catch(java.io.IOException e) {}

 return EVAL_PAGE;

 }

 public void release() {

 pageContext = null;

 parent = null;

 }

 private String doReverse(String output) {

 int len = output.length();

 char out2[] = new char[len];

 for(int i=0;i<len;i++) {

 out2[i] = output.charAt(len-1-i);

 298

 }

 return new String(out2);

 }

}

This listing has many of the same methods as the previous example, which is to be
expected, as body tags will need to be initialized with a pageContext and parent, just as
any other tag. The first difference is that doStartTag() returns EVAL_BODY_BUFFERED,
indicating that it will be manipulating the contents of the body. This manipulation is
accomplished in the doEndTag() method, which first checks whether the body content is
available by checking whether the special variable bodyContent is null. This variable is
defined in the base class.
If the bodyContent is available, the tag obtains the contents by writing them to a
StringWriter, using the writeOut() method. This happens after the body has been
processed, so if the body has any c:out or other JSP tags, as well as any other JSP tags,
they will already have been replaced by the specified values.
Once the content of the body has been obtained, reversing it is fairly simple and is done
by the doReverse() method in this class. Sending the contents to the page is then as
simple as writing it to out, just as was done for the date in Listing 13.2.
It is now possible to clarify exactly what out is. It is an instance of another class, called
JspWriter that at the top level will send any data written to it on to the user. However,
within body tags, the JspWriter will store, or buffer, the data that is written to it, so that
the bodyContent object can pass this data to the body tag. So in this case, if the
awl:reverse tag is being used from within another body tag, out will hold onto the
reversed text and pass it along to the other tag. This is all managed transparently by the
JSP engine, so tag authors almost never need to worry about what exactly out is when
they are writing data to it.

13.4 Using the Expression Language

 299

The JSP engine does not automatically handle attribute values that use the expression
language. If a page were to call awl:date with a value of ${param. myFormat} as the
value of format, the DateFormat object would attempt to use the literal string
${param.myFormat} when formatting the number and would not automatically look up
the value of the parameter called myFormat.
It is the tag's responsibility to interpret any expression language variables that it wishes to
make dynamic. Fortunately, a few classes make this much easier. The primary one is
ExpressionEvaluator, which does the evaluation. ExpressionEvaluator uses a couple
of additional classes: VariableResolver, which is responsible for looking up the values
of any variables used within an expression, and FunctionMapper, which can handle more
complex kinds of expressions involving calls to functions. The functionality is split into
these pieces in order to make it easier to customize their behavior. It would be possible
for a programmer to replace the default VariableResolver with one that obtained values
from a database. It would even be possible to create an ExpressionEvaluator that
handled a different kind of expression language entirely, making it possible to write
expressions in other languages, such as Scheme or Perl, if such a thing were ever desired.
Leaving aside such exotic thoughts, let's look at the basic use of these classes to enable
dynamic attributes. Listing 13.4 shows the class that implements the awl:maybeShow tag
from Chapter 4. Recall that this tag has one attribute, show, which may be yes, no, or
reverse.

Listing 13.4 A tag that uses the expression language

package com.awl.jspbook.ch04;

import java.io.IOException;

import java.io.StringWriter;

import java.text.SimpleDateFormat;

import java.util.Date;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

 300

import javax.servlet.jsp.el.*;

public class MaybeShowTag extends BodyTagSupport {

 private String show;

 public String getShow() {return show;}

 public void setShow(String show) {this.show = show;}

 private PageContext pageContext;

 public PageContext getPageContext() {

 return pageContext;

 }

 public void setPageContext(PageContext pageContext) {

 this.pageContext = pageContext;

 }

 private Tag parent;

 public Tag getParent() {return parent;}

 public void setParent(Tag parent) {

 this.parent = parent;

 }

 public void release() {

 pageContext = null;

 parent = null;

 }

 public int doStartTag() throws JspException {

 return EVAL_BODY_BUFFERED;

 }

 301

 public int doEndTag() throws JspException {

 // If we've been through the body, grab

 // the contents

 String output = "";

 if(bodyContent != null) {

 StringWriter sw = new StringWriter();

 try {

 bodyContent.writeOut(sw);

 output = sw.toString();

 } catch(java.io.IOException e) {}

 }

 // Resolve the actual command by assuming

 // the provided value is a script in the

 // expression language

 ExpressionEvaluator ee =

 pageContext.getExpressionEvaluator();

 VariableResolver vr =

 pageContext.getVariableResolver();

 // No default function mapper is provided or

 // needed

 FunctionMapper fm = null;

 Expression expr = null;

 try {

 expr = ee.parseExpression(show,

 String.class,

 fm,

 302

 null);

 } catch (ELParseException e) {

 throw new JspException(

 "Unable to parse expression for show");

 } catch (ELException e2) {

 throw new JspException(

 "Unable to evaluate expression for show");

 }

 try {

 show = (String) expr.evaluate(vr);

 } catch (ELException e) {

 throw new JspException(

 "Unable to evaluate expression for show");

 }

 if("reverse".equals(show)) {

 output = doReverse(output);

 } else if("no".equals(show)) {

 output = "";

 }

 try {

 pageContext.getOut().print(output);

 } catch(java.io.IOException e) {}

 return EVAL_PAGE;

 }

 private String doReverse(String output) {

 int len = output.length();

 char out2[] = new char[len];

 303

 for(int i=0;i<len;i++) {

 out2[i] = output.charAt(len-1-i);

 }

 return new String(out2);

 }

}

To a large extent, this looks like the tags already discussed in this chapter; in particular,
nothing is special about the show attribute. The magic happens in doStartTag(), which
first uses the pageContext in order to obtain the default ExpressionEvaluator and
VariableResolver. The doStartTag() then uses these objects to build an Expression
object, which is an internal representation of the expression that can be evaluated quickly
and efficiently. The call to parseExpression() also takes a class as an argument, in this
case String.class, which represents the type of object that should be returned from the
expression.
If the expression parses correctly, it will then be evaluated by passing the
VariableResolver to the evaluate() method. If all goes well, this will return the result
of the expression. To be rigorous, the code should now check the value to ensure that it is
one of the three acceptable possibilities, but in the interest of keeping the code simple,
this check has been omitted. The use of the value itself is pretty straightforward; it is
simply, used to decide whether to leave the output as is, reverse it, or delete it.

13.5 JSPs as Custom Tags

As of version 2.0, it is possible to create new tags in JSP, as well as in Java. This is
supported by a few new tags, such as jsp:doBody, and some new directives, such as
variable. The idea is straightforward, as the page translator can turn a JSP into a servlet,
which is a Java file, as well as turn a JSP into tag, which is another kind of Java file. The
details are beyond the scope of this book, but interested readers can find all the details
starting in Section 8.4 of the JSP 2.0 specification.

13.6 Summary and Conclusions

 304

In Chapter 2, we were using JSP comments simply to remove chunks of text from a page.
We've now reached the point at which new tags can be created, putting the full power of
the Java language and libraries into simple boxes that are no more difficult to use than
old-fashioned HTML tags.
Of course, writing tags can be a complicated business, and it would not be possible to
cover all the intricacies in one chapter. The material here, in conjunction with everything
that was said about servlets in Chapter 11, should allow the creation of rich and varied
tags that meet most needs. Users interested in more of the details should read Sections 12
and 13 in the JSP 2.0 specification. Fortunately, a large collection of sample tags is
available to study: the standard tag library itself. Thanks to the wonders of open-source
development, all the code for the tags in the standard library is available for download
from the Jakarta site at
http://jakarta.apache.org/builds/jakartataglibs/releases/standard/src/. The sheer number of
files may seem overwhelming, but looking through some of the classes, such as the one
that implements org.apache.taglibs.standard.tag.el.core.OutTag, will quickly reveal some
familiar things from this chapter.

 305

Chapter 14. Advanced Topics

The preceding chapters have included more than enough information to build almost any
conceivable Web site by using JSPs, beans, databases, and servlets. In fact, however, a
great deal in the JSP, servlet, JDBC, and bean specifications could not possibly be
included here. This book has concentrated on those features that are most common: the
ones that will be used 90 percent of the time. This chapter surveys a few remaining topics
that should cover another 5 percent.

14.1 Declaring Variables and Methods

As JSPs are servlets and class variables and new methods can be added to servlets, it
should be possible to do the same to a JSP. This can be done by placing the declaration
between <jsp:delcare> and </jsp:declare> tags or, equivalently, by placing the
declaration between <%! and %>. Compare this to the jsp:scriplet tag seen in Chapter
9. That tag causes the page translator to embed code within the JSP equivalent of the
service() method; jsp:declare causes code to be embedded in the generated Java
class. In other words, the declaration tags can define new methods as well as variables.
Listing 14.1 shows a JSP page that computes the the nth prime number, using a declared
method.

Listing 14.1 A JSP with a user-defined method

<%!

 public int primes(int n) {

 if(n < 2) return 2;

 if(n == 2) return 3;

 int primes[] = new int[n];

 primes[0] = 2;

 primes[1] = 3;

 306

 int candidate = 5;

 int numSoFar = 2;

 boolean maybePrime;

 while (numSoFar < n) {

 maybePrime = true;

 for(int i=0;i<numSoFar && maybePrime;i++) {

 maybePrime = (candidate % primes[i]) != 0;

 }

 if(maybePrime) {

 primes[numSoFar++] = candidate;

 }

 candidate++;

 }

 return primes[n-1];

 }

%>

<HTML>

<HEAD><TITLE>Primes</TITLE></HEAD>

<BODY>

<P>Here are the first 5 prime numbers:</P>

<%= primes(1) %>

<%= primes(2) %>

<%= primes(3) %>

<%= primes(4) %>

<%= primes(5) %>

 307

</BODY>

</HTML>

This example uses another tag to display the values. This expression tag may be written
<%= ... %>, as was done here or, equivalently, as <jsp:expression> ...
</jsp:expression>. In either case, the result is identical to writing <% out.print(...)
%>, with the dot replaced by the expression.
The primes() method itself computes primes in a simple way. It starts with the first two
primes and computes each prime after that by checking every number against the list of
primes it has already computed. When checking 9, it will first check 9/2, which will not
divide evenly. It then checks 9/3, which will divide evenly, ruling 9 out as a prime
number.
Although this works, it has several inefficiencies. Every time the method is called, it will
recompute the whole array to get to the number it wants, even if it has already computed
most or all of that array. Listing 14.1 will compute the first four primes when asked to
evaluate primes(4), and it will then recompute all four in the next step, when it asked for
the fifth.
The solution is to take the primes array out of the method and into a separate field in the
class. Then each time it is asked for a prime number, the method can check the list it has
already built and return the number if it has already been computed. If not, the method
will then need to compute only the values between the last one it found and the one for
which it has just been asked.
It will also make sense to start the array with more than two values, giving the method a
bit more of a jump start. The best place to do this is when the JSP is first loaded, which
can be done by placing the initialization code in a jspInit() method. Although this
method will be treated specially by the JSP engine, it can be declared just like any other
method, as shown in Listing 14.2.

Listing 14.2 A JSP with a jspInit() method

<%!

 int primes[];

%>

<%!

 public void jspInit() {

 308

 /* Pre-populate the first 100 primes */

 primes(100);

 }

%>

<%!

 public int primes(int n) {

 if(primes != null && n < primes.length) {

 return primes[n-1];

 }

 int oldPrimes[] = primes;

 primes = new int[n+1];

 int candidate;

 int numSoFar;

 if(oldPrimes != null) {

 System.arraycopy(oldPrimes,0,

 primes,0,oldPrimes.length-1);

 candidate = oldPrimes[oldPrimes.length-1];

 numSoFar = oldPrimes.length;

 } else {

 primes[0] = 2;

 candidate = 3;

 numSoFar = 1;

 }

 boolean maybePrime;

 while (numSoFar < n) {

 maybePrime = true;

 for(int i=0;i<numSoFar && maybePrime;i++) {

 maybePrime = (candidate % primes[i]) != 0;

 }

 if(maybePrime) {

 309

 primes[numSoFar++] = candidate;

 }

 candidate++;

 }

 return primes[n-1];

 }

%>

<HTML>

<HEAD><TITLE>Primes</TITLE></HEAD>

<BODY>

<P>Here are the first 5 prime numbers:</P>

<%= primes(1) %>

<%= primes(2) %>

<%= primes(3) %>

<%= primes(4) %>

<%= primes(5) %>

</BODY>

</HTML>

14.2 Extending Different Classes

Considering how much Java code is in Listings 14.1 and 14.2, it might as well be a
servlet. But if it were, it would have the same old problem of being difficult to change the
appearance or other aspects, such as the number of primes to generate. The code could
also be placed in a bean or custom tag, which might initialize the array in its constructor.

 310

This is normally the recommended approach, but another alternative may be preferable in
some instances.
In Chapter 11, it was mentioned that all JSPs implement the HttpJspPage interface.
Tomcat does this by making JSPs extend the HttpJspBase class, which in turn
implements HttpJspPage. In principle, a JSP could extend a different class, so long as
that class also implemented HttpJspPage. This class could define the primes() and
jspInit() methods. The JSP engine will still call jspInit() when it loads the JSP, and
the primes() method will then be available to the page without the need to define any
code in the page itself. Listing 14.3 shows the class containing the prime code.

Listing 14.3 A base class with the prime methods

package com.awl.jspbook.ch14;

import org.apache.jasper.runtime.*;

public abstract class Primes extends HttpJspBase {

 int primes[];

 public void jspInit() {

 /* Pre-populate the first 100 primes */

 primes(100);

 }

 /**

 * We don't need to do anything when the JSP

 * is destroyed, but we still need to provide

 * this method to satisfy the interface.

 */

 public void jspDestroy() {

 return;

 }

 public int primes(int n) {

 if(primes != null && n < primes.length) {

 return primes[n-1];

 311

 }

 int oldPrimes[] = primes;

 primes = new int[n];

 int candidate;

 int numSoFar;

 if(oldPrimes != null) {

 System.arraycopy(oldPrimes,0,primes,0,

 oldPrimes.length-1);

 candidate = oldPrimes[oldPrimes.length-1];

 numSoFar = oldPrimes.length;

 } else {

 primes[0] = 2;

 candidate = 3;

 numSoFar = 1;

 }

 boolean maybePrime;

 while (numSoFar < n) {

 maybePrime = true;

 for(int i=0;i<numSoFar && maybePrime;i++) {

 maybePrime = (candidate % primes[i]) != 0;

 }

 if(maybePrime) {

 primes[numSoFar++] = candidate;

 }

 candidate++;

 }

 return primes[n-1];

 }

}

 312

Once this class has been defined, using it is quite simple, as shown in Listing 14.4.

Listing 14.4 A JSP that extends a different base class

<%@ page extends="com.awl.jspbook.ch14.Primes" %>

<HTML>

<HEAD><TITLE>Primes</TITLE></HEAD>

<BODY>

<P>Here are the first 5 prime numbers:</P>

<%= primes(1) %>

<%= primes(2) %>

<%= primes(3) %>

<%= primes(4) %>

<%= primes(5) %>

</BODY>

</HTML>

The JSP is told to use a different base class with another use of the page directive. Apart
from this directive, the rest of the page is straightforward and much cleaner than the
previous versions.
When faced with the need to add some functionality to a JSP, four choices are now
available: Use a bean, use a new tag, define the methods in the JSP, or put the methods in
a separate class. Putting the code in the JSP is ugly and cumbersome, which leaves the
other three possibilities. The decisions will almost always fall on the side of beans or
custom tags. The JSP specification states, in section JSP.1.10: "[The extends attribute]
should not be used without careful consideration as it restricts the ability of the JSP
engine to provide specialized superclasses that may improve on the quality of rendered
service."

 313

14.3 Returning Other Kinds of Data

Several examples in Chapter 8 use the page directive to change the content type, and
Chapter 11 notes that this is accomplished by calling the setContentType() method in
the HttpServletResponse class. One of the exciting possibilities that this ability offers
is for a JSP or servlet to generate binary data, such as an image, as well as various kinds
of text. This will at long last make it possible to fix the one remaining problem with the
Java News Today site. Recall that users are permitted to change the color of the top and
side navigation areas by setting a value in a style sheet. However, a rounded corner is
used between these two pieces in order to give the page a smoother apparence, and this
rounded corner is an image that cannot be controlled by a style sheet.
Manipulating binary data would be difficult to do directly in a JSP, so a bean will be used
to do the data preparation. Listing 14.5 shows a bean that generates the data for a GIF file
containing the corner.

Listing 14.5 A bean that generates GIF data

package com.awl.jspbook.ch14;

import java.io.*;

public class CornerBean {

 private final static byte cornerBytes[] = {

 (byte)0x49, (byte)0x47, (byte)0x38, (byte)0x46,

 (byte)0x61, (byte)0x37, (byte)0x00, (byte)0x14,

 (byte)0x00, (byte)0x14, (byte)0x00, (byte)0x80,

 (byte)0x66, (byte)0x00, (byte)0xff, (byte)0xff,

 (byte)0xff, (byte)0xff, (byte)0x2c, (byte)0xff,

 (byte)0x00, (byte)0x00, (byte)0x00, (byte)0x00,

 (byte)0x00, (byte)0x14, (byte)0x00, (byte)0x14,

 (byte)0x02, (byte)0x00, (byte)0x84, (byte)0x27,

 (byte)0x69, (byte)0x8f, (byte)0xea, (byte)0xc1,

 (byte)0x9b, (byte)0x0c, (byte)0x31, (byte)0x43,

 (byte)0x55, (byte)0xce, (byte)0xcb, (byte)0xed,

 (byte)0x73, (byte)0x75, (byte)0x7d, (byte)0x4d,

 314

 (byte)0x28, (byte)0x5d, (byte)0x40, (byte)0x82,

 (byte)0x1d, (byte)0x99, (byte)0x8a, (byte)0x68,

 (byte)0x50, (byte)0xad, (byte)0x4a, (byte)0xeb,

 (byte)0x35, (byte)0xb1, (byte)0x75, (byte)0xd3,

 (byte)0xe3, (byte)0x73, (byte)0xce, (byte)0xf9,

 (byte)0x05, (byte)0xf7,(byte)0x3b, (byte)0x00};

 private String fgColor = "7f7f7f";

 private String bgColor = "ffffff";

 public String getFgColor() {return fgColor;}

 public String getBgColor() {return bgColor;}

 public void setFgColor(String fgColor) {

 this.fgColor = fgColor;

 byte tmp[] = toHex(fgColor);

 cornerBytes[13] = (byte) (tmp[0] * 16 + tmp[1]);

 cornerBytes[14] = (byte) (tmp[2] * 16 + tmp[3]);

 cornerBytes[15] = (byte) (tmp[4] * 16 + tmp[5]);

 }

 public void setBgColor(String bgColor) {

 this.bgColor = bgColor;

 byte tmp[] = toHex(bgColor);

 cornerBytes[16] = (byte) (tmp[0] * 16 + tmp[1]);

 cornerBytes[17] = (byte) (tmp[2] * 16 + tmp[3]);

 cornerBytes[18] = (byte) (tmp[4] * 16 + tmp[5]);

 }

 public String getCorner() {

 return new String(cornerBytes);

 }

 public byte[] toHex(String s) {

 byte tmp[] = s.toUpperCase().getBytes();

 315

 for(int i=0;i<tmp.length;i++) {

 if(tmp[i] >= 'A' && tmp[i] <= 'F') {

 tmp[i] = (byte) (tmp[i] - 'A' + 10);

 } else {

 tmp[i] = (byte) (tmp[i] - '0');

 }

 }

 return tmp;

 }

}

The GIF data, with a gray foreground and white background, is held in the cornerBytes
array. GIFs store their colors in a well-defined location: the colormap. The setFgColor()
and setBgColor() methods change the values in this colormap, and the getCorner
method simply returns the data as a new string. This bean can now be used in a JSP, as
shown in Listing 14.6.

Listing 14.6 A JSP page that generates a GIF

<%@

taglib

prefix="c"

uri="http://java.sun.com/jstl/core" %><%@

page

contentType="image/gif" %><jsp:useBean

id="corner"

class="com.awl.jspbook.ch14.CornerBean"/><jsp:useBean

id="user7"

class="com.awl.jspbook.ch07.UserInfoBean"

scope="session"/><jsp:setProperty

name="corner"

property="fgColor"

property="${user7.bannerColor}"/><jsp:getProperty

name="corner" property="corner"/>

 316

The formatting of this example is a little strange, as all the tags are directly adjacent and
all the line breaks are inside the tags. This was done to ensure that no whitespace shows
up intermixed with the image data, which would cause a browser to be unable to render it.
For this and numerous other reasons, this kind of thing is unlikely ever to be done in the
real world. Servlets are much better at manipulating binary data than JSPs, even with the
help of beans. However, this does show how a JSP can generate things other than text.
Nothing new is in the code itself. The content type is set through the page directive, the
bean is loaded, the user's chosen bannerColor property is assigned to the corner's
fgColor property with a jsp:setProperty tag, and the corner property is then
obtained.

14.4 Threads

Threads, an integral and powerful feature of Java, allow a single program to do many
things simultaneously. An obvious example is a Web server that is written in Java and
that may handle hundreds of user requests at the same time. The earliest Web servers
handled multiple requests by essentially creating a copy of themselves for each, which
can be slow and use a lot of memory. Under Java, it is necessary only to start a new
thread, and it will use the same code and same memory as all the other threads.
To describe what threads are, consider the way someone might have read this book. A
person might have started at page 1 and read straight through to this point. Alternatively,
the reader may have skipped around a bit, perhaps checking Chapter 9 to read more about
a particular Java construct. In any case, each reader defines his or her own path through
the book.
Now consider two or more people reading this book simultaneously. In real-world terms,
this might mean that the pages would need to be torn out and passed around; conceptually,
however, several people could be reading at the same time. Each will define a path
through the material, based on personal interests and familiarity with some of the topics.
Sometimes, two or more people might find themselves reading the same words at the
same time; at other points, everyone will be reading at different places.
Java threads work much like this, except that they are reading Java instructions instead of
words. A new reader can start by specifying the chapter at which to start. A new thread
can be created at any time and given a method to start with, usually the run() method of

 317

a class that implements the Runnable interface. Once a thread has started, it may take a
different path through the code, based on input from users, time of day, contents of a
database, or anything else that can be expressed in a conditional.
So far, there is no problem; multiple readers can go through a book without interfering
with one another, and multiple threads can move through a Java program without ever
knowing that another thread exists. However, consider what would happen if this book
had a quiz at the end of each chapter. One reader might start working on a quiz, starting
with the first question, and another reader might start the same quiz a minute later,
lagging behind the first reader by a few questions. By the time the first reader finished,
most of the answers would have been over-written by the second reader, and the score for
the quiz would be a meaningless combination.
Threads have an analogous problem, which can be demonstrated by the simple JSP
shown in Listing 14.7.

Listing 14.7 A JSP with a potential thread problem

<%! String machineName; %>

<% machineName = request.getRemoteHost(); %>

<HTML>

<BODY>

<P> You are using a computer called <%= machineName %>.</P>

</BODY>

</HTML>

In this example, machineName is an instance variable, meaning that there will be one
shared among all the users of this JSP. Now consider what would happen if two users,
Daria and Jane, access this page more or less simultaneously. For the sake of discussion,
assume that they are using machines called orwell and van_gogh, respectively.
If Daria's request is received first, machineName will be set to Orwell. If Jane's request is
then received before Daria's thread gets to the expression, machineName will then be set
to van_gogh. Then when Daria's request gets to the expression, the JSP will state that she
is using van_gogh, which is incorrect.

 318

The chances of this happening are pretty slim if a page is small and simple or if it is
accessed infrequently. However, as a page gets more complex and takes longer to
generate, or as it is used by more people, potential thread problems become much more
likely.
The JSP specification provides an easy way to avoid thread problems, but it is not
without its costs. A JSP can declare that it is not thread safe, meaning that is is not able to
handle multiple threads simultaneously. This can be done by using another variant of the
page directive; simply add the following line at the top of the JSP:
<%@ page isThreadSafe="false"%>

The same thing can be done in a servlet by having it implement the
javax.servlet.SingleThreadModel interface. When it sees that a JSP or servlet is not
thread safe, the JSP engine will force all requests to go through sequentially. This means
that if Daria gets to the page first, either Jane will have to wait until Daria has the full
response back, or the Web server will need to create a second instance of the servlet for
Jane.
This does indeed avoid the thread problem, but the result is that either users may have to
wait for their turn, which will make the site seem slower, or multiple versions of servlets
will need to be created, using up memory. This may eventually cause users to give up on
a site in frustration, which is not acceptable for a site that wishes to build and hold an
audience. However, the single-threading technique is useful for tracking down problems.
If a page or a whole site is exhibiting strange bugs that appear irregularly and are
impossible to recreate or track down, it may be worth making all pages single threaded
for a while. If the problems go away, it is a safe bet that some threading issue is the
cause.

14.4.1 Avoiding Thread Problems

In the general case, avoiding any thread problems may be quite difficult and is a science
unto itself. Concurrent Programming in Java™ Second Edition: Design Principles and
Patterns by Doug Lea (Addison-Wesley, 2000) provides much more information for
those who want to understand the issues fully. Fortunately, it is not difficult to avoid the
most common kinds of thread problems in a JSP. The first step is knowing what may
potentially cause problems.
As Listing 14.7 showed, instance variables can definitely cause bugs, but local variables
cannot. When a thread calls a method, a private copy of all that method's variables is

 319

created, so each thread is working with its own copy. The problem would vanish if the
declaration in Listing 14.7 were replaced with a scriptlet creating a local variable:
<% String machineName; %>

As each request and response object are also private to each thread, the problem would
never have arisen if Listing 14.7 had skipped the intermediate variable altogether and just
called
<%= request.getRemoteHost() %>

This also applies to objects in the request scope. As each thread has its own request, each
request scope is separate from all others, which means that beans or other objects placed
in this scope will not normally be available to any other thread. Of course, if an object is
already available to multiple threads, simply placing it in the request scope will not
protect it. If several threads were all to put the machineName instance variable into their
own request scopes, it will still be the same variable, and any change made by one thread
would still be visible to all others.
Objects in the session scope are also safe in general, as only one user, and hence one
thread, will typically be accessing a given session at any moment. This, after all, is the
whole point of the session scope. It is possible for a user to open multiple browser
windows and hit different pages simultaneously, which can in principle cause problems.
Normally, this should not be a concern. The same is true of the page scope.
That leaves the application scope, which is clearly not thread safe. Anything in the
application scope may be used by several pages and several users simultaneously. This
offers a powerful mechanism for sharing data across pages, but it also means that thread
safety may need to be considered carefully.
Usually, the application scope will contain beans created from pages by the jsp:useBean
tag. The issue of thread safety then moves into the Java code within the bean. The easiest
way to ensure that a bean is thread safe is for each of its methods to be written as
public int someMethod(...) {

 synchronize(this) {

 ... method code ...

 }

}

The call to synchronize() puts a lock in place, which ensures that only one thread at a
time will be able to execute any method in that bean. This goes somewhat back to the
situation when JSP is declared not thread safe, but it is much more granular. If Daria and
Jane are accessing pages using the same bean in an application scope, one of them will
have to wait for the other only if they both happen to call a method in that bean at the

 320

same time. If they are in the section of the page that uses the bean at different times, they
will both be able to continue using the other portions of the page without needing to wait
for each other.
Typically, in fact, not all the methods of a bean will need to be synchronized, which will
further decrease the chances that any user will have to wait for another. This is where the
science of threading comes in, and interested readers are referred to Concurrent
Programming in Java™ Second Edition: Design Principles and Patterns for the details.

14.4.2 Using Threads

So far, they have appeared only as potential sources of bugs, but threads can be powerful
allies as well. Any time a user's request requires an action on the server side but the user
does not need to wait for the action to be completed, the action can be handled by
creating a new thread. Examples are such things as placing an order at an e-commerce
site. The user doesn't have to wait for the order to reach the shipping center; it is enough
for the user to know that the order has been entered into the system. Once that has been
done, the user can be shown a page indicating that the order is being processed, and a
separate thread that will handle the back-end processing, including contacting the
shipping center can start.
Threads can also be used to ensure that data is updated or that data in memory and in a
database is synchronized. For example, recall the bean that contained advertising
information for Java News Today, as used in Chapter 7. This bean would load data from
the database when it was first constructed. This data would include the number of
impressions the advertiser had purchased and the number delivered so far, and each time
the ad was shown to a user, the count would be incremented. However, it would be
extremely inefficient to have this bean update the count in the database each time an ad
was shown, as that would mean a constant stream of writes to the database, which would
slow down the whole site.
A better solution is to have the ad bean keep the counts in memory, and once every 10
minutes or so update all the counts in the database. The outline of the code that does this
is shown in Listing 14.8; the full code is included on the CD-ROM.

Listing 14.8 A bean that periodically saves itself to a database

package com.awl.jspbook.ch07;

import java.sql.*;

 321

import com.canetoad.util.PersistentConnection;

public class AdManagerBean implements Runnable {

 public final static Integer ZERO = new Integer(0);

 private AdBean ads[];

 private Thread runner;

 public AdManagerBean() {

 // Load all the ads in the system!

 AdBean tmp = new AdBean();

 ads = tmp.getBeans();

 // Start a thread to keep things synchronized with

 // the database

 runner = new Thread(this);

 }

 public void run() {

 while(runner != null) {

 try {

 // sleep 10 minutes

 Thread.sleep(1000 * 60 * 10);

 // Now update the database by subtracting

 // the number of impressions seen from the

 // number sold

 Connection tmp =

 PersistentConnection.getConnection();

 Statement s =

 tmp.createStatement();

 for(int i=0;i<ads.length;i++) {

 if(ZERO.equals(

 ads[i].getImpressions()))

 {

 s.executeUpdate(

 322

 "update ad set impressions = impressions-" +

 ads[i].getImpressions() +

 " where ad_id = " +

 ads[i].getAdId());

 // If the impression count has

 // reached 0, we should remove it

 // from the system, but we'll

 // assume that happens off-line

 // as part of some nightly

 // processing

 // Reset the counter

 ads[i].setImpressions(ZERO);

 }

 }

 s.close();

 } catch (Exception e) {

 System.err.println(

 "Unable to decrement ad counter");

 e.printStackTrace(System.err);

 }

 }

 }

}

When the bean is constructed, it will create a new thread, which it then starts. The
Thread class will call the run() method of the object it is created with, which in this case
is the same object. The run() method simply sleeps for 10 minutes and then calls the
bean's update() method, which saves any new data to the database.

14.5 Advanced Error Handling

 323

Chapter 2 mentioned in passing that it is possible to send users to a custom JSP when an
error occurs. This is a two-step process. First, the page that may generate the error should
specify the destination with one use of the page directive:
<%@ page errorPage="error.jsp" %>

Second, the page that is to act as the error handler should declare this fact with another
use of the page directive:
<%@ page isErrorPage="true" %>

The error page can do anything that any other JSP can do, but in addition it will probably
want to report the error to the user and/or a site administrator. To make this possible, the
error itself is contained in an Exception object, as described in Chapter 9, and this object
is called, not surprisingly, exception. Listing 14.9 uses this variable to report the error to
the user, using the JNT style instead of the default Tomcat one.

Listing 14.9 A simple error page

<%@ page isErrorPage="true" %>

<jsp:include page="top.jsp" flush="true">

 <jsp:param name="title" value="Error"/>

</jsp:include>

<% exception.printStackTrace(out); %>

<jsp:include page="bottom.jsp" flush="true"/>

The details of the error are unlikely to be of use to the end user, so it is more likely that
an error page will simply offer an apology to the user and behind the scenes report it to
the administrator. Listing 14.10 writes the error to a file called "errors."

Listing 14.10 A slightly more sophisticated error page

<%@ page isErrorPage="true"

 import="java.io.*" %>

<jsp:include page="top.jsp" flush="true">

 <jsp:param name="title" value="Error"/>

</jsp:include>

 324

We're sorry, but an error occurred while building

your page. We will try to fix this problem shortly;

in the meantime please return to the

JNT home page

<%

FileWriter w = new FileWriter("errors",true);

PrintWriter fileOut = new PrintWriter(w);

exception.printStackTrace(fileOut);

w.close();

%>

<jsp:include page="bottom.jsp" flush="true"/>

This example uses another new feature of the page directive, import, which makes a
package available to a JSP. Here, it is used to import the java.io package, which
contains classes to manage files and printing.
In fact, writing an error to a file like this is not terribly productive, as all errors are
already saved in the Tomcat error logs. However, it is possible to use this basic technique
to do more elaborate things, such as send an e-mail alert to the site maintainer every time
an error crops up. A standard Java extension, the Java Mail API, would handle all the
hard work in this case.

14.6 Summary and Conclusions

The topics covered in this chapter will not be everyday concerns but are included here on
the theory that no knowledge is ever wasted. At times, it may be easier for a JSP to define
a utility method than to use a bean, and this method might be used so often that it makes
sense to put it in a base class. Sooner or later, the highest-volume sites will have to start
worrying about thread issues, and this chapter has enough information to avoid most of
the common problems that may be encountered in a multithreaded environment.
That concludes our introduction to the wonderful world of JavaServer Pages, but perhaps
it is just the beginning of your use of this exciting and powerful technology. The

 325

CD-ROM contains the complete set of Java News Today pages; a good place to start
experimenting might be to take the site as it is and turn it into something with a real
design, one that might attract users. Or try creating new sections, authors, or keywords, or
perhaps even drop all the existing ones and create a brand new set. Or start from scratch
and create a news site about Linux, music, or anything else. For every dynamic Web site
that exists today, an infinite number of ideas have yet to be explored. Let JavaServer
Pages be the technology that turns your great idea into a dynamic and compelling Web
site that might just be the Internet's next Big Thing.

 326

Appendix A. Summary of Tags

Section A.1. Built-in Tags
Section A.2. Core Tags
Section A.3. Format, Parsing, and Internationalization Tags
Section A.4. SQL Tags
Section A.5. XML Tags

A.1 Built-in Tags

Note: Parameters marked as "dynamic" may be expression language scripts.

jsp:scriptlet: Embeds Java code directly in the servlet constructed at translation
time; equivalently, <% ... %>

Body: Fully formed Java code

jsp:declaration: Embeds Java declarations directly in the top level of the servlet
constructed at translation time; equivalently, <%! ... %>

Body: Fully formed Java declarations

jsp:expression: Obtains the value of a Java expression, which may contain method
calls, declared variables, or beans loaded with jsp:useBean; equivalently, <%= ...

%>. This latter form may be used as the value attribute in a jsp:param or
jsp:setProperty and as the page attribute in jsp:forward and jsp:include.

Body: A fully formed Java expression

jsp:include: Includes the contents of one JSP, servlet, or HTML page at request
time

Parameter Dynamic? Required? Description

page No Yes The page to include

flush No No Flag indicating whether to send all data to the user
after the included page completes or to continue to

 327

jsp:include: Includes the contents of one JSP, servlet, or HTML page at request
time

Parameter Dynamic? Required? Description

buffer it

Body: Any number of jsp:param tags

jsp:include: Transfers control to another JSP, servlet, or HTML page. No data
can be written either before or after this tag.

Parameter Dynamic? Required? Description

page No Yes The page to which the request should be
transferred

Body: Any number of jsp:param tags

jsp:param: A named parameter for a request to a jsp:include or jsp:forward.
Such parameters are treated by the receiving page exactly as if they had come from

a form.

Parameter Dynamic? Required? Description

name No Yes The name of the parameter

value No Yes The value of the parameter

Body: None

jsp:useBean: Makes a bean available to the rest of a page

Parameter Dynamic? Required? Description

id No Yes The name by which this bean will be known to the
rest of the page

scope No No The scope in which the bean lives

class No No The class that implements the bean. The class
and/or type attribute must be provided.

type No No The class the bean should be treated as. The

 328

jsp:useBean: Makes a bean available to the rest of a page

Parameter Dynamic? Required? Description

implementing class must extend or implement this
type.

beanName No No The name of a serialized bean to load. When this
attribute is used, the type must also be specified.

Body: Arbitrary JSP code, which will be executed if the bean has been created as a result
of this tag

jsp:getProperty: Displays a property from a bean

Parameter Dynamic? Required? Description

name No Yes The name of the bean, as specified in the
jsp:useBean tag

property No Yes The name of the property to obtain

Body: None

jsp:setProperty: Sets one or more properties in a bean

Parameter Dynamic? Required? Description

name No Yes The name of the bean, as specified in the
jsp:useBean tag

property No Yes The name of the property to set. May be "*",
indicating to set all properties whose name
matches the name of a parameter from a form

value No No The value of the property; if not present, a value
will be looked for in the set of parameters

Body: None

 329

A.2 Core Tags

c:out: Sends the result of an expression to the page

Parameter Dynamic? Required? Description

value Yes Yes The expression to be evaluated and displayed

escapeXml Yes No Defaults to true; if true, special characters will
be converted to special codes that can be rendered
within an HTML page

default Yes No If the value is null and there is a default, that
default will be displayed.

Body: Optional; if present, acts the same as the default attribute

c:set: Sets a variable or bean property

Parameter Dynamic? Required? Description

value Yes No The value to which the variable target will be set

var No No Name of the variable to set

scope No No Scope in which the variable lives

target Yes No Expression evaluating to a bean

property Yes No The property in the target to be set

Body: Optional; if present, acts the same as the value attribute

c:remove: Removes a variable from a scope

Parameter Dynamic? Required? Description

var No Yes The variable to be removed

scope No Yes The scope in which the variable lives

Body: None

 330

c:catch: Catches any exception that occurs during JSP processing

Parameter Dynamic? Required? Description

var No Yes The name of a variable in the page scope in
which the java.lang.Exception object will
be stored

Body: The content of the body will be processed as usual. If an exception occurs during
this processing, it will be stored in the named var, and the JSP code following the closing
tag will be processed.

c:if: Conditionally evaluates a block of JSP code

Parameter Dynamic? Required? Description

test Yes Yes An expression that should evaluate to a Boolean

var No No The name of a variable in which the result of the
test will be stored

scope No No The scope in which the variable lives

Body: Anything in the body will be evaluated if and only if test evaluates to true.

c:choose: Conditional evaluates one of several blocks of JSP code

Body: Any number of c:when tags; zero or one c:otherwise tags

c:when: A single alternative within a c:choose

Parameter Dynamic? Required? Description

test Yes Yes An expression that should evaluate to
a Boolean

Body: Anything in the body will be evaluated if and only if test evaluates to true. Once
one test within a set of c:where tags succeeds, no other options will be tested.

c:otherwise: Default option within a c:choose

Body: If none of the tests within a set of c:where tags succeeds, the body of a
c:otherwise tag will be evaluated, if provided.

 331

c:forEach: Repeats a block of JSP code once for each element in an array or other
collection

Parameter Dynamic? Required? Description

var No Yes The name of the variable in which each item of
the collection will be stored

items Yes No An expression evaluating to an array, list, or map.
If items is not provided, begin and end must be.

varStatus No No The name of a variable in which the status of the
iteration will be stored

begin Yes No An expression evaluating to an integer from which
the iteration will start counting

end Yes No An expression evaluating to an integer at which
the iteration will stop

step Yes No An expression evaluating to an integer
representing the increment to the count; defaults to
1

Body: The contents of the body will be repeated once for each element in items, or
(end-count)/step times.

c:forTokens: Repeats a block of JSP code once for each token

Parameter Dynamic? Required? Description

var No Yes The name of the variable in which each item of
the collection will be stored

varStatus No No The name of a variable in which the status of the
iteration will be stored

items Yes Yes An expression evaluating to a single String
containing multiple substrings, separated by
delimiters

delims Yes Yes An expression evaluating to a String containing

 332

c:forTokens: Repeats a block of JSP code once for each token

Parameter Dynamic? Required? Description

the set of delimiters with which to split the items
string

begin Yes No An expression evaluating to an integer
representing the index of the first token of interest

end Yes No An expression evaluating to an integer
representing the index of the last token of interest

step Yes No The number of intervening tokens to skip

Body: The contents of the body will be repeated once for each token.

c:input: Loads the content of any URL, and puts it in either the page or a variable

Parameter Dynamic? Required? Description

url Yes Yes The URL to retrieve

context Yes No The name of the context when loading a URL
from the same machine but a different Web
application

var No No The name of a variable in which to store the
resulting text, rather than sending it to the page

scope No No Scope in which the variable lives

charEncoding Yes No The character encoding to use for the data

varReader No No The name of the variable holding a Reader
that will be used to load the data

Body: Any number of c:param tags

c:url: Constructs a URL resolving relative references and properly URL-encoding
query parameters

Parameter Dynamic? Required? Description

 333

c:url: Constructs a URL resolving relative references and properly URL-encoding
query parameters

Parameter Dynamic? Required? Description

value Yes Yes The base URL to be processed

context Yes No The name of a foreign context if the resulting
URL is not in the same Web application as the
current page

var No No A variable in which to store the resulting URL

scope No No The scope of the variable

Body: Any number of c:param tags

c:redirect: Constructs a URL and issues an HTTP redirect to the browser

Parameter Dynamic? Required? Description

url Yes Yes The base URL to be processed

context Yes No The name of a foreign context if the resulting
URL is not in the same Web application as the
current page

Body: Any number of c:param tags

c:param: Provides a parameter to a URL in a c:import, c:url, or c:redirect

Parameter Dynamic? Required? Description

name Yes Yes The name of the parameter

value Yes Yes The value of the parameter

Body: None

 334

A.3 Format, Parsing, and Internationalization Tags

fmt:setLocale: Sets the current locale for use in all subsequent format tags

Parameter Dynamic? Required? Description

value Yes Yes An expression evaluating to the name of the locale
to use

variant Yes No Minor variant of the locale

scope No No Scope in which the locale should be set

Body: None

fmt:bundle: Loads a resource bundle that will be used in the body content

Parameter Dynamic? Required? Description

basename Yes Yes The base name of the bundle to load

prefix Yes No A String that will be prepended to the value key
of any fmt:message tags within the body

Body: Arbitrary JSP code; any fmt:message tags within the body will be resolved using
the specified bundle

fmt:setBundle: Loads a resource bundle into a scope, to be used by all fmt:message
tags within that scope

Parameter Dynamic? Required? Description

basename Yes Yes The base name of the bundle to load

var No No The variable in which to store the
bundle

scope No No The scope of the variable

Body: None

fmt:message: Looks up a message in the current resource bundle

 335

Parameter Dynamic? Required? Description

key Yes No The name of the message to look up; if not
provided as an attribute, this should be in the body

bundle Yes No The bundle to use

var No No Name of a variable holding a bundle, set up by an
fmt:setBundle tag

scope No No The scope of the variable

Body: A key if not provided as an attribute, along with any number of fmt:param tags

fmt:param: Provides a parameter to a message in a bundle

Parameter Dynamic? Required? Description

value Yes No The value of the parameter; if not provided as an
attribute, the body content will be used

Body: Arbitrary JSP code, which will be evaluated and used as the value if one is not
provided as an attribute

fmt:requestEncoding: Specifies the request's character encoding

Parameter Dynamic? Required? Description

value Yes Yes The name of the encoding to use when processing
request parameters

Body: None

fmt:timeZone: Specifies a time zone to use when formatting dates within the body
content

Parameter Dynamic? Required? Description

value Yes Yes The time zone to use

Body: Arbitrary JSP code; any fmt:formatTime tags will use the given time zone

fmt:setTimeZone: Sets the time zone globally or in a scoped variable

 336

Parameter Dynamic? Required? Description

value Yes Yes The time zone to use

var No No The variable in which to store the time zone

scope No No The scope of the variable

Body: None

fmt:formatNumber: Formats a number appropriately for the current locale

Parameter Dynamic? Required? Description

value Yes No The number to format; if not provided as
an attribute, the body content will be
used

type Yes No Indicates whether the number should be
treated as a number, currency, or
percentage

pattern Yes No The formatting pattern to use

currencyCode Yes No When formatting as a currency, specifies
the currency code

currencySymbol Yes No When formatting as a currency, specifies
the currency symbol

groupingUsed Yes No Indicates whether value has any
grouping symbols

maxIntegerDigits Yes No Maximum number of digits comprising
the integer portion of the result

minIntegerDigits Yes No Minimum number of digits comprising
the integer portion of the result

maxFractionDigits Yes No Maximum number of digits comprising
the noninteger portion of the result

minFractionDigits Yes No Minimum number of digits comprising

 337

fmt:formatNumber: Formats a number appropriately for the current locale

Parameter Dynamic? Required? Description

the noninteger portion of the result

var No No The name of a variable in which to store
the formatted result. If not provided,
output goes to the page

scope No No The scope of the variable

Body: If value is not provided as an attribute, the body content is used as the value.

fmt:parseNumber: Parses a number, storing the result in a scope variable

Parameter Dynamic? Required? Description

value Yes No The string to be parsed; if not provided as an
attribute, the body content will be used

type Yes No Indicates whether the value should be treated as
a number, currency, or percentage

parseLocale Yes No The locale to use

integerOnly Yes No Indicates whether to ignore any fractional part
of the resulting number

var No Yes The variable in which the resulting number
should be stored

scope No No The scope of var

Body: If the value is not provided as an attribute, the body content is used as the value.

fmt:formatDate: Formats a date and/or time appropriately for a specified locale

Parameter Dynamic? Required? Description

value Yes Yes The value to format

type Yes No Specifies whether the time, date, or both are to be
formatted

 338

fmt:formatDate: Formats a date and/or time appropriately for a specified locale

Parameter Dynamic? Required? Description

dateStyle Yes No A predefined pattern from
java.text.DateFormat to use when formatting

timeStyle Yes No A predefined pattern from
java.text.DateFormat to use when formatting

pattern Yes Yes A pattern to use when formatting

timeZone Yes No The time zone to use when formatting

var No No The name of a variable in which the formatted
value should be stored

scope No No The scope of var

Body: None

fmt:parseDate: Parses a string representation of a date and/or time

Parameter Dynamic? Required? Description

value Yes No The string to be parsed; if not provided as an
attribute, the body content will be used

type Yes No Specifies whether the time, date, or both are to be
formatted

dateStyle Yes No A predefined pattern from
java.text.DateFormat to use when formatting

timeStyle Yes No A predefined pattern from
java.text.DateFormat to use when formatting

pattern No No A pattern to use when formatting

timeZone Yes No The time zone to use when formatting

var No No The name of a variable in which the formatted
value should be stored

 339

fmt:parseDate: Parses a string representation of a date and/or time

Parameter Dynamic? Required? Description

scope No No The scope of var

Body: If the value is not provided as an attribute, the body content is used as the value.

 340

A.4 SQL Tags

sql:query: Issues a query to a database, storing the results in a variable suitable for
iterating with c:forEach

Parameter Dynamic? Required? Description

sql Yes No The query to be evaluated; if not provided as an
attribute, the body content will be used

dataSource Yes No The JDBC data source to use to talk to the
database; may specify the arguments to the
driver/manager class or a JNDI resource

startRow Yes No The first row to include in the result set

maxRows Yes No The maximum number of rows to include in the
result set

var No Yes The variable in which the result of the query
should be stored

scope No No The scope of var

Body: The query, if not provided as an attribute, along with any number of sql:param
tags

sql:update:

Parameter Dynamic? Required? Description

sql Yes No The update to be evaluated; if not provided as an
attribute, the body content will be used

dataSource Yes No The JDBC data source to use to talk to the
database; may specify the arguments to the
driver/manager class or a JNDI resource

startRow Yes No The first row to include in the result set

var No Yes The variable in which the result of the update

 341

sql:update:

Parameter Dynamic? Required? Description

should be stored

scope No No The scope of var

Body: The query, if not provided as an attribute, along with any number of sql:param
tags

sql:transaction: Provides a transaction context for a set of sql:query and
sql:update tags

Parameter Dynamic? Required? Description

dataSource Yes No The JDBC data source to use to talk to the
database; may specify the arguments to the
driver/manager class or a JNDI resource

isolation Yes No The isolation level of the transaction

Body: Arbitrary JSP code. All sql:query and sql:update tags within the body will
occur in the same transaction.

sql:setDataSource: Sets a SQL data source either in a variable or globally

Parameter Dynamic? Required? Description

dataSource Yes No The JDBC data source to use to talk to the
database; may specify the arguments to the
driver/manager class or a JNDI resource

driver Yes No The JDBC driver to use

url Yes No The URL to use

user Yes No The name of the user with which to connect to
the database

password Yes No The password with which to connect to the
database

 342

sql:setDataSource: Sets a SQL data source either in a variable or globally

Parameter Dynamic? Required? Description

var No No The variable in which to store the data source

scope No No The scope of var

Body: None

sql:param: Provides a parameter to a SQL statement used in a sql:query or
sql:update

Parameter Dynamic? Required? Description

value Yes No The value of the parameter; if not provided as an
attribute, the body content will be used

Body: If value is not provided as an attribute, the body content will be evaluated and
used as the value.

 343

A.5 XML Tags

x:parse: Parses XML into an internal form suitable for use in subsequent XML
tags

Parameter Dynamic? Required? Description

xml Yes No The XML to parse; if not provided as an attribute,
the body content will be used

systemId Yes No The URI to use when parsing the XML

filter Yes No A filter to apply to the XML source

var No Yes The name of a variable in which to store the
parsed representation

scope No No The scope of var

varDom No No The name of a variable in which to store the
parsed representation as an instance of
org.w3c.dom.Document

scopeDom No No The scope of varDom

Body: If the XML is not provided as an attribute, the body content will be used.

x:out: Sends a segment of XML selected by an XPath expression to the page

Parameter Dynamic? Required? Description

select No Yes The XPath expression

escapeXml Yes No Defaults to true; if true, special characters will
be converted to special codes that can be rendered
within an HTML page

Body: None

x:set: Stores a segment of XML selected by an XPath expression in a scoped
variable

 344

Parameter Dynamic? Required? Description

select No Yes The XPath expression

var No Yes The name of a variable in which to store the
result

scope No No The scope of var

Body: None

x:if: Evaluates an XPath expression and evaluates the body content if the result is
true

Parameter Dynamic? Required? Description

select No Yes The XPath expression

var No No A variable in which to store the result

scope No No The scope of var

Body: Optional; if present, will be evaluated if the result of the select is true

x:choose: Conditional; evaluates one of several blocks of JSP code

Body: Any number of x:when tags; zero or one x:otherwise tags

x:when: A single alternative within an x:choose

Parameter Dynamic? Required? Description

select No Yes An XPath expression

Body: Anything in the body will be evaluated if and only if test evaluates to true. Once
one test within a set of c:where tags succeeds, no other options will be tested.

x:otherwise: Default option within an x:choose

Body: If none of the tests within a set of x:where tags succeeds, the body of an
x:otherwise tag will be evaluated, if provided.

x:forEach: Repeats a block of JSP code once for each element selected by an XPath
expression

 345

Parameter Dynamic? Required? Description

var No Yes The name of the variable in which each item will
be stored

select No No The XPath expression

Body: Arbitrary JSP code

x:transform: Applies an XSLT stylesheet to an XML document

Parameter Dynamic? Required? Description

xml Yes No XML document to be transformed

xslt Yes No The XSLT specification

xmlSystemId Yes No The URI for parsing the XML
document

xsltSystemId Yes No The URI for parsing the XSLT style
sheet

var No No The variable in which the
transformed document should be
stored

scope No No The scope of var

result Yes No A variable in which to store the
transformation result

Body: If the xml attribute is not provided, the body may hold the XML. If the xslt
attribute is not provided, the body may contain the XSLT. At least one must be provided
as an attribute. Body may also contain any number of x:param tags.

x:param: Provides a parameter to the transformation performed by an x:transform
tag

Parameter Dynamic? Required? Description

name Yes Yes The name of the parameter

 346

x:param: Provides a parameter to the transformation performed by an x:transform
tag

Parameter Dynamic? Required? Description

value Yes No The value of the parameter; if not provided as an
attribute, the body content will be used

Body: If the value is not provided as an attribute, the body content will be used as the
value.

 347

Appendix B. Configuring a Web
Application

JavaServer Pages do not exist in a vacuum. At the very least, they will need access to
numerous Java classes representing beans and the implementations of tag libraries. In
addition, in any site of realistic complexity, JSPs will coexist with a set of servlets and
filters and will need access to various other resources. Of course, some files will be
needed to configure all this.
All these pieces together comprise a Web application, and the exact layout of such
applications is defined as part of the J2EE specification. Standardizing on such a format
has numerous advantages. It makes it possible to develop under one application server,
such as Tomcat, and to deploy under something commercially supported. It also makes it
possible to package Web applications as single files called war (Web application resource)
files that can be sold or otherwise distributed without needing to support hundreds of
deployment scenarios.

B.1 Layout of the Directories

All the JSP files live in the top level of the Web application. It is also possible to create
arbitrary subdirectories for JSPs, and these are accessed as URLs in the obvious way.
All the other elements of the application are in a special directory: WEB-INF. Within this
directory is the master configuration file, web.xml, which will be examined in the next
section.

Java code libraries�JAR (Java Archive)�files are placed in the WEB-INF/lib directory.

This automatically adds these JAR files to the CLASSPATH for the application. There
are no subdirectories under lib.
Code specific to the Web application may be placed in a JAR file, which is then installed
in WEB-INF/lib, or in WEB-INF/classes. This directory is added to the effective
CLASSPATH; within it, code is laid out according to the usual Java rules. For example,
the class com.awl.jsp.ch08.CdBean would be found in

 348

WEB-INF/classes/com/awl/jspbook/ch08/CdBean.class. It is up to the developer
whether to leave the Java source files within these directories or to compile them
elsewhere and move the resulting .class files.
It is also common to store resources, such as property files, resource bundles, and
serialized beans, in the CLASSPATH. These resources may therefore also be placed in
JAR files or under WEB-INF/classes.
Finally, by convention, is a special directory for tag library descriptors: WEB-INF/taglibs.
This convention is not enforced, as the location of TLD files is specified in web.xml; in
general, it is good practice to put them all in one place.
Once the application has been laid out according to these rules, it can be packaged into
a .war file, with the following command:
jar -c0f ../application_name.war .

Here, application_name can be replaced with the chosen name for the application. In
many application servers, such as Tomcat, it is possible to deploy an application by
simply placing the .war file in the proper directory. For Tomcat, the directory is called
webapps under the Tomcat home directory.

B.2 The Web.xml File

The web.xml file controls everything specific to the current Web applications. Typically,
one or more files configure the application server as a whole; this vendor-specific file is
not defined as part of the J2EE specification.
As with any good XML document (see Chapter 8), web.xml starts with a declaration,
DTD reference, and root node. The top level looks like this:
<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

</web-app>

The real meat is found within the web-app tags and consists of the following elements in
order.

 349

1. An optional icon to be used by interactive configuration or maintenance applications.
This can specify small (16 x 16) and large (32 x 32) images, which should live within the
main directory of the Web application. Example:
<icon>

 <large-icon>images/jspbook_large.jpg</large-icon>

 <small-icon>images/jspbook_small.jpg</small-icon>

</icon>

2. An optional display name, which can also be used by administration tools. Example:
<display-name>JSP book examples</display-name>

3. An optional description, for the benefit of people reading the web.xml file or
application tools. Example:
<description>

Example code from "JavaServer Pages, second edition"

</description>

4. An optional flag indicating that this Web application can be run within an application
server that runs across multiple computers:
<distributable/>

5. Any number of context parameters consisting of a name, a value, and an optional
description. These parameters will be used by the servletContext when it starts up.
Example:
<context-param>

 <param-name>defaultColor</param-name>

 <param-value>black</param-value>

 <description>Standard background color</description>

</context-param>

6. Any number of filter definitions (see Chapter 9). These definitions must define the
name of the filter and the implementing class and may also provide initialization
parameters. In addition, an icon, a display name, and a description may be provided.
Example:
<filter>

 <filter-name>authFilter</filter-name>

 <display-name>Auth filter</display-name>

 <description>

 Filter that prevents non-reports from creating articles

 </description>

 <filter-class>com.awl.jspbook.ch13.AuthFilter</filter-class>

 350

 <init-param>

 <param-name>protectedPages</param-name>

 <param-value>create_article.jsp</param-value>

 </init-param>

</filter>

7. Any number of filter mappings, which tell the Web application which requests should
be passed through each filter. Any given filter may appear in multiple filter-mappings,
and multiple filter-mappings may refer to the same URL pattern. In this case, the chain is
constructed in the order of the filter-mapping definitions. Example:
<filter-mapping>

 <filter-name>authFilter</filter-name>

 <url-pattern>*.jsp</url-pattern>

</filter-mapping>

8. Any number of listeners (see Chapter 11). Example:
<listener>

 <listener-class>

 com.awl.jspbook.ch11.SampleListener

 </listener-class>

</listener>

9. Any number of servlet declarations, specifying the name of the servlet, the
implementing class, and any initialization parameters. An icon, display name, and
description may also be provided. Additional configuration information related to
security may be provided, but such configuration is beyond the scope of this book.
Example:
<servlet>

 <servlet-name>action</servlet-name>

 <servlet-class>

 org.apache.struts.action.ActionServlet

 </servlet-class>

 <init-param>

 <param-name>application</param-name>

 <param-value>

 config.ApplicationResources

 </param-value>

 </init-param>

 <init-param>

 351

 <param-name>config</param-name>

 <param-value>

 /WEB-INF/classes/config/struts-config.xml

 </param-value>

 </init-param>

</servlet>

10. Any number of servlet mappings, associating a servlet name with a class of URLs.
Like filters, one servlet may be configured to handle multiple sets of URLs; unlike filters,
only one servlet can handle any given URL. Example:
<servlet-mapping>

 <servlet-name>action</servlet-name>

 <url-pattern>*.do</url-pattern>

</servlet-mapping>

11. An optional session config, which specifies how long, in seconds, sessions should last.
Example:
<session-config>

 <session-timeout>3600</session-timeout>

</session-config>

12. Any number of MIME (multipurpose Internet mail extensions) mappings. These
associate file name extensions with MIME types, which tell the browser how to handle
the data. Example:
<mime-mapping>

 <extension>ogg</extension>

 <mime-type>audio/ogg</mime-type>

</mime-mapping>

13. An optional list of "welcome files." These files specify a set of files to look for if a
user tries to access a directory name. For example, it would be possible to send users
going to "/directory" to "/directory/index.jsp" if that file exists, to "/directory/index.html"
if it doesn't, and so on. Example:
<welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

</welcome-file-list>

14. Any number of error pages, each of which associates a page with a kind of error.
Using this, it is possible to send requests for a nonexistent page to one place, an
application error to another, and so on. Example:

 352

<error-page>

 <error-code>404</error-code>

 <location>no_such_page.jsp</location>

</error-page>

15. Any number of tag library declarations that associate a URI as used in a JSP with a
tag library descriptor (see Chapter 13). Example:
<taglib>

 <taglib-uri>http://java.sun.com/jstl/core</taglib-uri>

 <taglib-location>/WEB-INF/taglibs/c.tld</taglib-location>

</taglib>

Then come places to specify various security and resource parameters, including the use
of Enterprise JavaBeans. These are also beyond the scope of this book; see the relevant
J2EE specifications for details.

 353

